
SANDIA REPORT
SAND2011-5011
Unlimited Release
Printed August 2011

Supersedes SAND2010-7451
Dated January 2011

IceT Users’ Guide and Reference
Version 2.1

Kenneth Moreland

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2011-5011
Unlimited Release

Printed August 2011

Supersedes SAND2010-7451
dated January 2011

IceT Users’ Guide and Reference
Version 2.1

Kenneth Moreland
Data Analysis and Visualization

Sandia National Laboratories
P.O. Box 5800 MS 1323

Albuquerque, NM 87185-1323
kmorel@sandia.gov

Abstract

The Image Composition Engine for Tiles (IceT) is a high-performance sort-last parallel rendering
library. In addition to providing accelerated rendering for a standard display, IceT provides the
unique ability to generate images for tiled displays. The overall resolution of the display may be
several times larger than any viewport that may be rendered by a single machine. This document
is an overview of the user interface to IceT.

3

Acknowledgement

I would like to thank Brian Wylie. It was his “big ideas” that got the ball rolling on the IceT
algorithms and library, and it was his continuing vision that pushed us on this path to parallel
rendering.

I would also like to thank the folks at Kitware, Inc. for adopting the IceT library as the parallel
rendering library for ParaView. They also maintain the IceT code repository. Without them, IceT
would probably be collecting dust on a crashed RAID somewhere.

4

Contents

1 Introduction 11

A Parallel Rendering Primer . 12

2 Tutorial 15

Building IceT . 15

Linking to IceT Libraries . 16

Creating IceT Enabled Applications . 18

3 Basic Usage 27

The State Machine . 27

Diagnostics . 30

Display Definition . 31

Strategies . 34

Drawing Callback . 36

Generic Drawing Callback . 36

OpenGL Drawing Callback . 39

Specifying Geometry Bounds . 39

Rendering . 40

Generic Rendering . 40

OpenGL Rendering . 42

Image Objects . 43

4 Customizing Compositing 47

5

Compositing Operation . 47

Z-Buffer Compositing . 48

Volume Rendering (and Other Transparent Objects) . 49

Image Inflation . 52

Floating Viewport . 53

Active-Pixel Encoding . 54

Interlaced Images . 55

Data Replication . 56

Compositing Network Hints . 57

Image Partition Collection . 58

Timing (and Other Metrics) . 59

5 Strategies 61

Single Image Compositing . 62

Tree Compositing . 64

Binary-Swap Compositing . 65

Radix-k Compositing . 66

Automatic Algorithm Selection . 68

Ordered Compositing . 68

Reduce Strategy . 68

Split Strategy . 70

Virtual Trees Strategy . 71

Sequential Strategy . 72

Direct Send Strategy . 73

6 Implementing New Strategies 75

Internal State Variables for Compositing . 77

6

Memory Management . 79

Image Manipulation Functions . 81

Creating Images . 81

Querying Images . 83

Setting Pixel Data . 84

Copying Full Pixel Data . 85

Copy Sparse Image Data . 87

Basic Sparse Image Copy . 87

Sparse Image Split . 87

Recursive Sparse Image Split . 89

Interlacing Images . 91

Compressing Images . 93

Rendering Images . 94

Image Compositing . 95

Communications . 96

Transferring Images . 98

Helper Communication Functions . 100

Invoking Single-Image Compositing . 102

Background Correction . 105

Matrix Operations . 106

Raising Diagnostics . 110

7 Communicators 113

MPI Communicators . 113

User Defined Communicators . 114

8 Transitioning from IceT 1.0 to IceT 2 119

7

Header File Changes . 119

Basic Type Changes . 119

Function Name Changes . 120

Getting Image Data . 120

Miscellaneous Changes . 121

Libraries . 121

CMake Configuration . 121

9 Future Work 123

10 Man Pages 125

icetAddTile . 126

icetBoundingBox . 128

icetBoundingVertices . 130

icetCompositeMode . 132

icetCompositeOrder . 134

icetCopyState . 136

icetCreateContext . 138

icetCreateMPICommunicator . 140

icetDataReplicationGroup . 142

icetDataReplicationGroupColor . 144

icetDestroyContext . 146

icetDestroyMPICommunicator . 148

icetDiagnostics . 150

icetDrawCallback . 152

icetDrawFrame . 155

icetEnable . 158

8

icetGet . 161

icetGetContext . 167

icetGetError . 169

icetGetSingleImageStrategyName . 171

icetGetStrategyName . 173

icetGLDrawCallback . 175

icetGLDrawFrame . 177

icetGLInitialize . 179

icetGLIsInitialized . 181

icetGLSetReadBuffer . 183

icetImageCopyColor . 185

icetImageGetColor . 187

icetImageGetColorFormat . 190

icetImageGetNumPixels . 192

icetImageIsNull . 194

icetImageNull . 196

icetIsEnabled . 198

icetPhysicalRenderSize . 200

icetResetTiles . 202

icetSetContext . 204

icetSetColorFormat . 206

icetSingleImageStrategy . 208

icetStrategy . 210

icetWallTime . 212

Index 214

9

List of Figures

1.1 Parallel rendering classes. 12

2.1 CMake user interface. 16

3.1 Defining a tile display. 31

4.1 Floating viewport. 53

4.2 Pixel shuffling in IceT’s image interlacing. 56

5.1 Example compositing problem. 63

5.2 Tree composite network. 64

5.3 Binary-swap composite network. 65

5.4 Radix-k composite network. 67

5.5 Reduce strategy composite network. 69

5.6 Split strategy composite network. 70

5.7 Virtual trees composite network. 71

5.8 Sequential compositing network. 72

5.9 Direct send compositing network. 73

10

Chapter 1

Introduction

The Image Composition Engine for Tiles (IceT) is an API designed to enable OpenGL appli-
cations to perform Sort-Last parallel rendering on very large displays. The displays are assumed
to be tiled displays, which are displays comprising an array of display devices that act together to
form a single large display. The overall resolution of the display may be several times larger than
any viewport that may be rendered by a single machine. It is also assumed that several processes
in the parallel application are display processes. That is, their entire display window makes up
part of the display.

The design philosophy behind IceT is to allow very large sets of polygons to be displayed
on very high resolution displays. As such, fast frame rates are sacrificed in lieu of very scalable
and very high polygon/second rendering rates. That said, there are many features in IceT that
allow an application to achieve interactive rates. These include image inflation, floating viewports,
active pixel encoding, and data replication. Together, these features make IceT a versatile parallel
rendering application that provides near optimal parallel rendering under most data size and image
size combinations. As an example, the ParaView application1 is using IceT for all of its parallel
rendering needs ranging from a desktop sized image to the world’s largest tiled displays and from
polygon counts ranging from 1 to 1 million (and growing).

IceT is designed to take advantage of spatial decomposition of the geometry being rendered.
That is, it works best if all the geometry on each process is located in as small a region of space as
possible. When this is true, each process usually projects geometry on only a small section of the
screen. This results in less work for the compositing engine. This is of particular importance for
displays with a large number of pixels.

IceT can also be used to perform sort-last parallel rendering to a single display. Such single-
tile rendering is simply a special case of the multi-tile display IceT was designed for. Many of
the optimizations done by IceT apply to the single-tile mode. Using IceT for this purpose is quite
worthwhile. IceT’s performance should rival that of other such software image compositors.

The rest of this document describes the use of the IceT API. There are also separate manual
pages for each of the functions described here. For more details on IceT’s algorithms, see:

Kenneth Moreland, Brian Wylie, and Constantine Pavlakos. “Sort-last parallel ren-

1http://www.paraview.org

11

http://www.paraview.org

Sorting N
etw

ork

R

R

R

R

Sort-First/Middle Rendering
Sorting N

etw
ork

R

R

R

R

Sort-Last Rendering

Figure 1.1. The differences between parallel rendering classes.
Sort-first and sort-middle algorithms transfer geometric data. Sort-
last algorithms transfer image data.

dering for viewing extremely large data sets on tile displays,” In Proceedings of IEEE
Symposium on Parallel and Large-Data Visualization and Graphics, October 2001,
pp. 85–154.

A Parallel Rendering Primer

IceT requires you to know very little about parallel rendering and their algorithms. However, it
is helpful to know the basic idea behind IceT’s algorithms. This section gives a brief introduction
to how IceT renders in parallel.

Parallel rendering algorithms are classified as sort-first, sort-middle, or sort-last. The key dis-
tinguishing feature of each class is how primitives are distributed amongst processes. As demon-
strated in Figure 1.1, sort-first and sort-middle algorithms allocate screen space to processes and
send the appropriate geometry to each process every frame whereas sort-last algorithms render
static partitions of geometry in each process and then composite the resulting images to a single
image.2 IceT is a sort-last parallel rendering library.

A convenient feature of sort-last rendering is that an application needs to change very little
about how it renders geometry. The geometry is rendered the same in parallel as it is in serial; the
only difference is that each process only renders a subset of the geometry. The typical operation of
a parallel application using sort-last rendering is to simply render locally and then composite the
images.

When rendering to a tiled display, as IceT allows you to do, there is an added level of com-

2In the interest of brevity and clarity, I am intentionally leaving out details that are unimportant to understanding
IceT such as hybrid algorithms and differences between sort-first and sort-middle algorithms.

12

plexity introduced because the graphics system is often not capable of rendering an image large
enough for the entire display. Thus, image compositing for a tiled display requires a loop that can
iteratively render images for each tile and composite them. IceT handles this looping and inter-
faces with the rendering functions of your application through a callback mechanism. This will be
described in the following chapters.

13

14

Chapter 2

Tutorial

In this chapter we outline the steps required to create a simple IceT application from building
the IceT source, using the created libraries, and writing your own applications. IceT is solely
responsible for the image composition part of parallel rendering. Thus, it relies on separate systems
for rendering and communication. The two most common libraries for these features are OpenGL
and MPI (the Message Passing Interface), respectively. IceT has support libraries for directly using
these two systems and we will use them for this tutorial.

This tutorial assumes the reader is familiar with OpenGL or some similar rendering system. If
this is your first experience with OpenGL programing, consider trying some typical serial rendering
before jumping into the parallel rendering domain. A familiarity with MPI is also helpful.

Building IceT

The IceT build process is very portable. It is regularly compiled on Microsoft Win-
dows, Macintosh OS X, and a wide variety of Unix implementations. IceT can be built
with any OpenGL 1.1 compliant installation. Most modern operating systems come dis-
tributed with OpenGL. For those that are not, you can usually use the Mesa 3D library
(www.mesa3d.org), a software implementation of OpenGL. An installation of MPI is also almost
always needed, although not strictly required. OpenMPI (http://www.open-mpi.org/) and MPICH
(http://www.mcs.anl.gov/mpi/mpich2/) are two free and widely portable implementation of MPI.

IceT uses CMake to build across so many different platforms. As such, you will have to
download the CMake build tools from www.cmake.org and install. Then, create a build directory
and run the CMake program (from the “Start” menu on Windows or ccmake on Unix and Mac OS
X). CMake will determine the parameters of your system and do its best to find libraries on which
IceT depends. The CMake program, shown in Figure 2.1 will also provide a GUI to allow you to
easily change build parameters and external libraries.

CMake will generate a set of build files for the local system. The type of files depends on the
type of machine you are using and the compile system you have chosen to use. On Unix machines,
make files are the most common. On Windows, you usually generate MSVC project files or nmake
files. On Mac OS X, either make files or Xcode project files are commonly generated based on

15

file:www.mesa3d.org
http://www.open-mpi.org/
http://www.mcs.anl.gov/mpi/mpich2/
file:www.cmake.org

Figure 2.1. The CMake user interface. The Unix version is on
the left whereas the Microsoft Windows version is on the right.

user selection. You then use the native build system to build and, optionally, install IceT.

Linking to IceT Libraries

IceT comes with three libraries: IceTCore, IceTGL, and IceTMPI. The actual filenames of
these libraries varies depending on the filesystem and build type. For example, on most Unix
systems, a static build results in filenames of libIceTCore.a and the like whereas shared libraries
are libIceTCore.so. Windows has libraries with names like IceTCore.lib as well as IceTCore.dll if
building shared libraries. However, the difference in these filenames usually hidden by the build
system, especially if you use a portable build system like CMake.

You are, of course, free to use whatever build system you like, whether it be system specific
or cross platform. Using IceT is simply a matter of finding the header and library files. However,
because IceT is built with CMake, it comes with some extra facilities for helping other CMake
builds find it. This section will give you the bare minimum you need to set up CMake to build an
application using IceT. Readers interested in learning more about CMake should pick up a copy of
Mastering CMake by Ken Martin and Bill Hoffman.

You define a build system with CMake by creating a CMakeLists.txt file. The CMakeLists.txt
file is basically a simple script that gives commands to CMake to tell it how to build your project.
Most CMakeLists.txt files start with the PROJECT command, which associates a name with your
project and optionally specifies a language.

PROJECT(IceT_Tutorial)

To use IceT from within your CMake project, run the FIND PACKAGE command. This com-
mand instructs CMake to find the IceTConfig.cmake file, which is written to IceT’s build or install
directory and contains all the necessary build settings.

16

FIND_PACKAGE(IceT REQUIRED)

INCLUDE_DIRECTORIES(${ICET_INCLUDE_DIRS})

Assuming that CMake finds IceT, the CMake variable ICET INCLUDE DIRS is defined and
can be passed to the INCLUDE DIRECTORIES CMake command. The variables ICET CORE LIBS,
ICET GL LIBS, and ICET MPI LIBS are also defined and can be used with a TARGET LINK -
LIBRARIES command to link in the respective IceT libraries as described later.

Any application using IceT will probably also be using OpenGL and MPI. In addition, the
example in the following section also uses GLUT for window management. CMake comes with
modules to find all three of these libraries, which makes it easy to include in our project.

FIND_PACKAGE(OpenGL REQUIRED)
FIND_PACKAGE(GLUT REQUIRED)
FIND_PACKAGE(MPI REQUIRED)

MARK_AS_ADVANCED(CLEAR
MPI_INCLUDE_PATH
MPI_LIBRARY
MPI_EXTRA_LIBRARY
)

INCLUDE_DIRECTORIES(
${OPENGL_INCLUDE_DIR}
${MPI_INCLUDE_PATH}
${GLUT_INCLUDE_DIR}
)

The only thing left to do is to tell CMake to build a program from a set of sources and libraries
specified with the ADD EXECUTABLE and TARGET LINK LIBRARIES commands, respectively.

ADD_EXECUTABLE(Tutorial Tutorial.c)
TARGET_LINK_LIBRARIES(Tutorial
${OPENGL_LIBRARIES}
${GLUT_LIBRARIES}
${MPI_LIBRARY}
${MPI_EXTRA_LIBRARY}
${ICET_CORE_LIBS}
${ICET_GL_LIBS}
${ICET_MPI_LIBS}
)

17

Creating IceT Enabled Applications

To use IceT, include its header: IceT.h. If you are using OpenGL for rendering, you will prob-
ably also want to use IceT’s OpenGL integration functions in IceTGL.h. You will almost always
need to also include the header containing an MPI version of an IceT communicator: IceTMPI.h.
On the rare occasion that you need to use IceT with a communication layer other than MPI, you
can define a custom communicator as described in Chapter 7.

#include <IceT.h>
#include <IceTGL.h>
#include <IceTMPI.h>

Before you call any IceT functions, you need to initialize MPI by calling MPI Init. You will
also need to create an OpenGL context. In other words, you need to make the rendering window
in which the OpenGL rendering commands will go. The process for doing this is greatly dependent
on the windowing system and beyond the scope of this document. It is usually easiest to use a third
party API to do this. If you are not already using a GUI tool that generates OpenGL windows for
you, then the GLUT API is a popular choice for simple applications.

You will then need to initialize IceT itself. Do this by first creating an IceT communicator
from an MPI communicator and then using that to create an IceT context. When using OpenGL,
you also need to initialize the OpenGL-specific code in IceT by calling icetGLInitialize.

comm = icetCreateMPICommunicator(MPI_COMM_WORLD);
context = icetCreateContext(comm);
icetGLInitialize();

In the proceeding code, comm is of type IceTCommunicator and context is of type IceTCon-
text.

Now that we have created and activated an IceT communicator, as well as initialized the IceT
state, we can start using IceT. It is often useful to first query IceT on the size of the parallel job it
is running in and what is the local process id, or rank. The values are stored in variables of type
IceTInt.

icetGetIntegerv(ICET_RANK, &rank);
icetGetIntegerv(ICET_NUM_PROCESSES, &num_proc);

Before rendering, we need to tell IceT the layout of the tiled display using the icetRe-
setTiles and icetAddTile functions. These commands must be executed with the same
arguments on all processes of the parallel job. IceT will assume that you setup the same display
layout everywhere.

18

If you are not actually driving a tiled display and instead just generating a desktop-sized im-
age, the following commands will correctly establish the IceT state (assuming WINDOW WIDTH and
WINDOW HEIGHT correctly reflect the desired image dimensions).

icetResetTiles();
icetAddTile(0, 0, WINDOW_WIDTH, WINDOW_HEIGHT, 0);

The icetResetTiles function simply tells IceT that you are about to define a display
layout. Each call to icetAddTile defines a tile in the display. In the case of a single image,
the single-tile rendering mode, icetAddTile is called only once. The first two arguments to
icetAddTile have no effect in this mode. The third and fourth arguments are the width and
height of the image to create. Usually you set this to the width and the height of the display
window, but the Image Inflation section in Chapter 4 describes other usage for these parameters.
The final argument is the rank of the display process. After a rendering the final complete image
will available only on this process. In the example above, we have directed the image to go to
process zero, often referred to as the root process.

To define an actual tiled display, simply call the icetAddTile function multiple times.
When describing tiles in a display, the first two arguments of icetAddTile describe where the
lower left corner of the tile is located in respect to the overall display. All together, the first four
arguments specify a viewport for the tile in an a single, cohesive high resolution display (which
is what we are trying to achieve with our tiled display). The code below defines a 2×2 tiled dis-
play with the top two tiles displayed by processes 0 and 1 and the bottom two tiles displayed by
processes 2 and 3.

icetResetTiles();
icetAddTile(0, WINDOW_HEIGHT, WINDOW_WIDTH, WINDOW_HEIGHT, 0);
icetAddTile(WINDOW_WIDTH,WINDOW_HEIGHT, WINDOW_WIDTH, WINDOW_HEIGHT, 1);
icetAddTile(0, 0, WINDOW_WIDTH, WINDOW_HEIGHT, 2);
icetAddTile(WINDOW_WIDTH,0, WINDOW_WIDTH, WINDOW_HEIGHT, 3);

IceT contains several strategies for image composition. Changing the strategy modifies the
algorithm IceT uses for parallel image compositing. You need to tell IceT which strategy to use
with the icetStrategy function. The code below sets IceT to use the reduce strategy, which
has proven to be an all-around good performer.

icetStrategy(ICET_STRATEGY_REDUCE);

However, when rendering only a single tile, your best bet is to use the sequential strategy, which
bypasses some of the collective communication necessary for other strategies.

icetStrategy(ICET_STRATEGY_SEQUENTIAL);

19

Chapter 5 gives more detailed descriptions and advice about the strategies. Like with the display
set up, all processes must set the same strategy.

IceT is almost ready to go. We just need to tell it some minimal information about how to
render your geometry. First, IceT needs to know the spatial extent of the geometry to be drawn (in
object space). The most natural way to do this is to use the icetBoundingBox function, which
defines an axis-aligned box defined by the minimum and maximum coordinates in each dimension.

icetBoundingBoxf(x_min, x_max, y_min, y_max, z_min, z_max);

The parameters can, and should be, different on each process, since each process will have a dif-
ferent partition of data. Strictly speaking, identifying the geometry bounds is not necessary. If they
are not defined, IceT will assume the geometry covers the entire screen. When rendering a single
small image, the information is of little consequence. However, when rendering larger images
this information can dramatically improve the performance of image composting. Specifying the
bounds can be critical on large tile displays.

The second and final piece of information IceT needs is a way to draw your geometry. IceT
achieves this through a drawing callback.

icetGLDrawCallback(drawScene);

The drawing callback is a pointer to any function that issues OpenGL commands that render
geometry to the active frame buffer. The callback is free to issue most OpenGL commands so long
as it restores all the OpenGL state (except, of course, frame buffer contents). Also, the callback
function should modify neither the projection matrix nor the clear color. Care needs to be taken
if the callback modifies the model view matrix. More details are given in the Drawing Callback
section of Chapter 3.

IceT is now ready to render. Rendering is initiated with a call to icetGLDrawFrame. The
icetGLDrawFrame must be called on all processes. The function will render the scene using
the provided drawing callback, composite the image, and place the appropriate images in the back
OpenGL buffers of the appropriate display processes.

icetGLDrawFrame();

Parallel rendering is now enabled in your application. Simply call icetGLDrawFrame every
time you wish to draw a new image. The geometry rendered by your may change from frame
to frame so long as you ensure that you also update IceT with the bounds of your geometry if it
changes.

The following code is a full example of a simple IceT application. Do not be alarmed by the
length. The majority of the code is spent in setting up the supporting libraries (OpenGL, GLUT,
and MPI) and in comments.

20

/* -*- c -*- ***
** Copyright (C) 2007 Sandia Corporation
** Under the terms of Contract DE-AC04-94AL85000, there is a non-exclusive
** license for use of this work by or on behalf of the U.S. Government.
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that this Notice and any statement
** of authorship are reproduced on all copies.
**
** This is a simple example of using the IceT library. It demonstrates the
** techniques described in the Tutorial chapter of the IceT User’s Guide.
***/

#include <stdlib.h>

/* IceT does not come with the facilities to create windows/OpenGL contexts.
* we will use glut for that. */

#ifndef __APPLE__
#include <GL/glut.h>
#include <GL/gl.h>
#else
#include <GLUT/glut.h>
#include <OpenGL/gl.h>
#endif

#include <IceT.h>
#include <IceTGL.h>
#include <IceTMPI.h>

#define NUM_TILES_X 2
#define NUM_TILES_Y 2
#define TILE_WIDTH 300
#define TILE_HEIGHT 300

static void InitIceT();
static void DoFrame();
static void Draw();

static int winId;
static IceTContext icetContext;

int main(int argc, char **argv)
{
int rank, numProc;
IceTCommunicator icetComm;

/* Setup MPI. */
MPI_Init(&argc, &argv);

21

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &numProc);

/* Setup a window and OpenGL context. Normally you would just place all the
* windows at 0, 0 (and probably full screen in tile display mode) to a local
* display, but since this is an example we are assuming that they are all
* going to one screen for display. */

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH | GLUT_ALPHA);
glutInitWindowPosition((rank%NUM_TILES_X)*(TILE_WIDTH+10),

(rank/NUM_TILES_Y)*(TILE_HEIGHT+50));
glutInitWindowSize(TILE_WIDTH, TILE_HEIGHT);
winId = glutCreateWindow("IceT Example");

/* Setup an IceT context. Since we are only creating one, this context will
* always be current. */

icetComm = icetCreateMPICommunicator(MPI_COMM_WORLD);
icetContext = icetCreateContext(icetComm);
icetDestroyMPICommunicator(icetComm);

/* Prepare for using the OpenGL layer. */
icetGLInitialize();

glutDisplayFunc(InitIceT);
glutIdleFunc(DoFrame);

/* Glut will only draw in the main loop. This will simply call our idle
* callback which will in turn call icetGLDrawFrame. */

glutMainLoop();

return 0;
}

static void InitIceT()
{
IceTInt rank, num_proc;

/* We could get these directly from MPI, but it’s just as easy to get them
* from IceT. */

icetGetIntegerv(ICET_RANK, &rank);
icetGetIntegerv(ICET_NUM_PROCESSES, &num_proc);

/* We should be able to set any color we want, but we should do it BEFORE
* icetGLDrawFrame() is called, not in the callback drawing function.
* There may also be limitations on the background color when performing
* color blending. */

glClearColor(0.2f, 0.5f, 0.1f, 1.0f);

22

/* Give IceT a function that will issue the OpenGL drawing commands. */
icetGLDrawCallback(Draw);

/* Give IceT the bounds of the polygons that will be drawn. Note that
* we must take into account any transformation that happens within the
* draw function (but IceT will take care of any transformation that
* happens before icetGLDrawFrame). */

icetBoundingBoxf(-0.5f+rank, 0.5f+rank, -0.5, 0.5, -0.5, 0.5);

/* Set up the tiled display. Normally, the display will be fixed for a
* given installation, but since this is a demo, we give two specific
* examples. */

if (num_proc < 4)
{
/* Here is an example of a "1 tile" case. This is functionally
* identical to a traditional sort last algorithm. */

icetResetTiles();
icetAddTile(0, 0, TILE_WIDTH, TILE_HEIGHT, 0);
}

else
{
/* Here is an example of a 4x4 tile layout. The tiles are displayed
* with the following ranks:
*
* +---+---+
* | 0 | 1 |
* +---+---+
* | 2 | 3 |
* +---+---+
*
* Each tile is simply defined by grabing a viewport in an infinite
* global display screen. The global viewport projection is
* automatically set to the smallest region containing all tiles.
*
* This example also shows tiles abutted against each other.
* Mullions and overlaps can be implemented by simply shifting tiles
* on top of or away from each other.
*/

icetResetTiles();
icetAddTile(0, TILE_HEIGHT, TILE_WIDTH, TILE_HEIGHT, 0);
icetAddTile(TILE_WIDTH, TILE_HEIGHT, TILE_WIDTH, TILE_HEIGHT, 1);
icetAddTile(0, 0, TILE_WIDTH, TILE_HEIGHT, 2);
icetAddTile(TILE_WIDTH, 0, TILE_WIDTH, TILE_HEIGHT, 3);
}

/* Tell IceT what strategy to use. The REDUCE strategy is an all-around

23

* good performer. */
icetStrategy(ICET_STRATEGY_REDUCE);

/* Set up the projection matrix as you normally would. */
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-0.75, 0.75, -0.75, 0.75, -0.75, 0.75);

/* Other normal OpenGL setup. */
glEnable(GL_DEPTH_TEST);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
if (rank%8 != 0)
{
GLfloat color[4];
color[0] = (float)(rank%2);
color[1] = (float)((rank/2)%2);
color[2] = (float)((rank/4)%2);
color[3] = 1.0;
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, color);
}

}

static void DoFrame()
{
/* In this idle callback, we do a simple animation loop and then exit. */
static float angle = 0;

IceTInt rank, num_proc;

/* We could get these directly from MPI, but it’s just as easy to get them
* from IceT. */

icetGetIntegerv(ICET_RANK, &rank);
icetGetIntegerv(ICET_NUM_PROCESSES, &num_proc);

if (angle <= 360)
{
/* We can set up a modelview matrix here and IceT will factor this
* in determining the screen projection of the geometry. Note that
* there is further transformation in the draw function that IceT
* cannot take into account. That transformation is handled in the
* application by deforming the bounds before giving them to
* IceT. */

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotatef(angle, 0.0, 1.0, 0.0);
glScalef(1.0f/num_proc, 1.0, 1.0);

24

glTranslatef(-(num_proc-1)/2.0f, 0.0, 0.0);

/* Instead of calling Draw() directly, call it indirectly through
* icetGLDrawFrame(). IceT will automatically handle image compositing. */

icetGLDrawFrame();

/* For obvious reasons, IceT should be run in double-buffered frame
* mode. After calling icetGLDrawFrame, the application should do a
* synchronize (a barrier is often about as good as you can do) and
* then a swap buffers. */

glutSwapBuffers();

angle += 1;
}

else
{
/* We are done with the animation. Bail out of the program here. Clean
* up IceT and the other libraries we used. */

icetDestroyContext(icetContext);

glutDestroyWindow(winId);

MPI_Finalize();

exit(0);
}

}

static void Draw()
{
IceTInt rank, num_proc;

/* We could get these directly from MPI, but it’s just as easy to get them
* from IceT. */

icetGetIntegerv(ICET_RANK, &rank);
icetGetIntegerv(ICET_NUM_PROCESSES, &num_proc);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

/* When changing the modelview matric in the draw function, you must be
* wary of two things. First, make sure the modelview matrix is restored
* to what is was when the function is called. Remember, the draw
* function may be called multiple times and transformations may be
* commuted. Also, the bounds of the drawn geometry must be correctly
* transformed before given to IceT. IceT has no way of knowing about
* transformations done here. It is an error to change the projection
* matrix in the draw function. */

25

glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glTranslatef((float)rank, 0, 0);
glutSolidSphere(0.5, 100, 100);
glPopMatrix();

}

26

Chapter 3

Basic Usage

In this chapter we describe in greater detail the basic features of IceT. The tutorial given in
Chapter 2 is a good place to start building your applications. You can then consult this chapter and
later ones for more details on the operations as well as descriptions of further features.

Prototypes for the majority of IceT types, functions, and identifiers can be found in the IceT.h
header file. If you are using OpenGL for rendering, which is common, you will probably want to
include the header IceTGL.h. You will also almost always need to include the header IceTMPI.h.
Chapter 7 provides more details on this last header file’s function.

#include <IceT.h>
#include <IceTGL.h>
#include <IceTMPI.h>

The State Machine

The IceT API borrows many concepts from OpenGL. One major concept taken is that of a state
machine. At all times IceT maintains a current state. The state can influence the operations that
IceT makes, and IceT’s operations can modify the state.

IceT can manage multiple collections of state at the same time. It does this by associating each
state with a context. At any given time, there is at most one active context. Any IceT function
called works using the current active context.

Contexts are created and destroyed with icetCreateContext and icetDestroyCon-
text, respectively.

IceTContext icetCreateContext(IceTCommunicator comm);

void icetDestroyContext(IceTContext context ;

These functions work with an object of type IceTContext. IceTContext is an opaque
type; you are not meant to directly access it. Instead, you pass the object to functions to do the
work for you.

27

The icetCreateContext function requires an object of type IceTCommunicator.
This is another opaque type that is described in more detail in Chapter 7. For now, just know
that you can create one from an MPI communicator using the icetCreateMPICommunica-
tor function.

IceTCommunicator icetCreateMPICommunicator(
MPI Comm mpi comm);

void icetDestroyMPICommunicator(IceTCommunicator comm);

Also be aware that if you plan to use IceT’s OpenGL layer, you will need to initialize it
with icetGLInitialize. You can query whether the OpenGL layer has be initialized with
icetGLIsInitialized.

void icetGLInitialize(void);

IceTBoolean icetGLIsInitialized(void);

It is good practice to call icetGLInitialize immediately after creating a context with
icetCreateContext to always ensure that the OpenGL layer is ready to be used (assuming
you plan to use it).

The following code gives the common boilerplate for setting up your initial IceT context.

#include <IceT.h>
#include <IceTGL.h>
#include <IceTMPI.h>

int main(int argc, char **argv)
{
IceTCommunicator icetComm;
IceTContext icetContext;

/* Setup MPI. */
MPI_Init(&argc, &argv);

/* Setup an IceT context. If we are only creating one, this context will
* always be current. */

icetComm = icetCreateMPICommunicator(MPI_COMM_WORLD);
icetContext = icetCreateContext(icetComm);
icetDestroyMPICommunicator(icetComm);

/* Initialize the OpenGL layer. */
icetGLInitialize();

/* Start your parallel rendering program here. */

/* Cleanup IceT and MPI. */

28

icetDestroyContext(icetContext);
MPI_Finalize();

return 0;
}

Any number of contexts may be created, each with its own associated state. At any given time,
a single given context is current. All IceT operations are applied with the state attached to the
current context. A handle to the current IceT context can be retrieved with the icetGetContext
function, and he current context can be changed by using the icetSetContext function.

IceTContext icetGetContext(void);

void icetSetContext(IceTContext context);

Changing the context is a fast and easy way to swap states. This could be used, for example,
to switch between rendering modes. One context could be used for a full resolution image, and
another could use image inflation (described in Chapter 4) to make faster but coarser images
during interaction.

When a context is created, its state is initialized to default values. You can effectively “du-
plicate” a context by copying the state of one context to another using the icetCopyState
function.

void icetCopyState(IceTContext dest,
const IceTContext src);

The state of a context comprises a group of key/value pairs. The state can be queried by using
any of the icetGet functions.

void icetGetDoublev (IceTEnum pname,
IceTDouble * params);

void icetGetFloatv (IceTEnum pname,
IceTFloat * params);

void icetGetIntegerv (IceTEnum pname,
IceTInt * params);

void icetGetBooleanv (IceTEnum pname,
IceTBoolean * params);

void icetGetPointerv (IceTEnum pname,
IceTVoid ** params);

The valid keys that can be used in the icetGet functions are listed in the icetGet docu-
mentation starting on page 161. There is no way to directly set these state variables. Instead, they
are set either by IceT configuration functions or indirectly as part of the operation of IceT. The

29

documentation for icetGet also describes which functions can be used to set each state entry
(assuming the user has control of that state entry).

There is a special set of state entries that toggle IceT options. Although you can query this
state with the icetGetBooleanv function, it is more typical to use the icetIsEnabled
function. Also unlike the other state variables, these variables can be directly manipulated with the
icetEnable and icetDisable functions.

IceTBoolean icetIsEnabled(IceTEnum pname);

void icetEnable (IceTEnum pname);

void icetDisable (IceTEnum pname);

The options queried with icetIsEnabled and manipulated with icetEnable and
icetDisable are listed in the icetEnable documentation starting on page 158.

Diagnostics

The IceT library has a mechanism for reporting diagnostics. There are three levels of diagnos-
tics. Errors are anomalous conditions that IceT considers a critical failure. An occurrence of an
error generally means that the future IceT operations will have undefined behavior. When IceT is
compiled in debug mode, a seg fault is intentionally raised when an error occurs to make it easier
to attach a debugger to the point where the error occurred.

Warnings are detections of anomalous conditions that are not as severe as errors. When a
warning occurs, the current operation may produce the incorrect results, but future operations
should continue to work.

IceT also can also provide a large volume of debug messages. These messages simply indicate
the status of IceT operations as they progress. They are generally of no use to anyone who is not
trying to develop or debug IceT operations.

IceT diagnostics are controlled with the icetDiagnostics function.

void icetDiagnostics(IceTBitField mask);

The icetDiagnostics function takes a set of flags that can me or-ed together. The diag-
nostics for errors, warnings, and debug statements can be set by passing the ICET DIAG ERRORS,
ICET DIAG WARNINGS, and ICET DIAG DEBUG flags, respectively. Turning on warnings im-
plicitly turns on errors and turning on debug statements implicitly turns on errors and warnings
(although there is no problem with redundantly specifying these flags).

IceT has the ability to report diagnostics either on all processes or only on the root process (the
process with rank 0). This behavior is controlled by the ICET DIAG ROOT NODE and ICET -

30

1280x1024
(0,0)

1280x1024
(2560,0)

1280x1024
(1280,0)

1280x1024
(0,1024)

1280x1024
(2560,1024)

1280x1024
(1280,1024)

1280x1024
(0,2048)

1280x1024
(2560,2048)

1280x1024
(1280,2048)

1280x1024
(0,0)

1280x1024
(2760,0)

1280x1024
(1380,0)

1280x1024
(0,1124)

1280x1024
(2760,1124)

1280x1024
(1380,1124)

1280x1024
(0,2248)

1280x1024
(2760,2248)

1280x1024
(1380,2248)

1280x1024
(0,1024)

1280x1024
(2760,0)

1280x1024
(1024,0)

1280x1024
(-256,-500)

1280x1024
(768,2048)

768x768
(0,2248) 1600x1200

(2440,1800)

1280x1024
(1380,2248)

Figure 3.1. Defining a tile display with viewports in a logical
global display. Three possible tile arrangements are shown. The
bounds of each tile is drawn with the viewport given inside. The
viewable area is shown with a dashed line.

DIAG ALL NODES flags. Many diagnostic messages occur on all nodes when they occur, so
reporting only on node 0 can greatly reduce the number of messages with which to contend. How-
ever, messages can differ between processes or may not occur on all processes.

The special flags ICET DIAG FULL and ICET DIAG OFF turn all possible diagnostics on
and all diagnostics completely off, respectively.

By default, IceT displays errors and warnings on all nodes. You can get the current diagnostic
level by calling icetGet with ICET DIAGNOSTIC LEVEL.

Display Definition

IceT assumes that the tiled display it is driving has each tile connected to the graphics output of
one of the processes in the parallel job in which it is running. This type of arrangement is natural
for any tiled display driven by a graphics cluster, and is the delivery method of many graphics
APIs.

IceT defines the configuration of a tiled display by using a logical global display with an
infinite 1 number of pixels in both the horizontal and vertical directions. The definition of each
tile comprises the identifier for the process connected to the physical projection and the viewport
(position and size) of the tile in the global display. IceT implicitly defines the rectangle that tightly
encompasses all of the tile viewports as the viewable area and snaps the viewing region (defined
by the OpenGL viewing matrices) to this area.

Figure 3.1 shows some possible tile arrangements. Mullions or overlaps of the tiles in the
physical display can be represented by the spacing or overlap of the viewports in the logical display.

1Well, OK. The logical global display only stretches as far as the 32-bit numbers that are used to define viewports.
But that’s still way bigger than any physical display that we can possibly conceive, so conceptually we call it infinite.

31

IceT does not require the tile layout to have any regularity. Chaotic layouts like that shown in the
right image of Figure 3.1 are legal, although probably not very useful. It is allowed, and in fact
encouraged, to have processes that are not directly connected to the tiled display. These non-
display processes still contribute to the image compositing work and will reduce the overall time
to render an image.

The display is defined using the icetResetTiles and icetAddTile functions. Any
previous tile definition is first cleared out using icetResetTiles and new tiles are added, one
at a time, using icetAddTile.

void icetResetTiles(void)

int icetAddTile(IceTInt x,
IceTInt y,
IceTSizeType width,
IceTSizeType height,
int display rank);

Each tile is specified using screen coordinates in the logical global display: the position of the
lower left corner and the width and height of the tile. Each tile also has a display process associated
with it. After an image is completely rendered and composited, the screen section belonging to
this tile will be placed in the process at the given rank.

The following code demonstrates a common example for establishing the tile layout: a grid of
projectors. The arrangement of projectors in this example assume that the projectors are connected
to processes in the order of left to right and then top to bottom, which is common. Note, however,
that IceT defines its logical global display with y values from the bottom up like OpenGL does.

icetResetTiles();
for (row = 0; row < num_tile_rows; row++) {

for (column = 0; column < num_tile_columns; column++) {
icetAddTile(column*TILE_WIDTH, (num_tile_rows-row-1)*TILE_HEIGHT,

TILE_WIDTH, TILE_HEIGHT,
row*num_tile_columns + column);

}
}

Mullions are added by simply spacing the tiles apart from each other in the logical global
display. Because they are defined in the logical global display, physical dimensions of the mullions
must first be converted to pixels using the dot pitch of the displays. The following code adds
mullions between all of the tiles.

icetResetTiles();
for (row = 0; row < num_tile_rows; row++) {

for (column = 0; column < num_tile_columns; column++) {

32

icetAddTile(column*(TILE_WIDTH + x_mullion),
(num_tile_rows-row-1)*(TILE_HEIGHT + y_mullion),
TILE_WIDTH, TILE_HEIGHT,
row*num_tile_columns + column);

}
}

An equally common use for IceT is to render images in parallel to a single display. In this
single-tile rendering mode, we simply create a single tile whose image will be placed in the GUI
of some application. This is done by either using the OpenGL context of the GUI as part of the
IceT rendering process or by grabbing the image of the single tile and copying into the GUI. The
example code below sets up IceT to create a single image that is accessible on the root process.

icetResetTiles();
icetAddTile(0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, 0);

IceT indexes the tiles in the order that they are defined with icetAddTile. You can get
the current definition of the tile display from a number of state variables, which can be retrieved
as always with icetGet. ICET NUM TILES stores the number of tiles that are defined (the
number of times icetAddTile was called). ICET TILE VIEWPORTS stores an array with all
of the dimensions of each tile. For each tile, ICET TILE VIEWPORTS contains the four values
〈x,y,width,height〉, stored consecutively, corresponding to the values passed to icetAddTile.
ICET DISPLAY NODES stores an array giving the rank of the display process displaying that tile.
Each process can also query the ICET TILE DISPLAYED variable to see which tile is displayed
locally. ICET TILE DISPLAYED is set to −1 on every process that does not display a tile.

You can get information about the display geometry as a whole through ICET GLOBAL -
VIEWPORT. This variable stores the four-tuple 〈x,y,width,height〉. x and y are placed at the left-
most and lowest position of all the tiles, and width and height are just big enough for the viewport
to cover all tiles.

The IceT image compositor remains decoupled from the rendering system. Calling icetAd-
dTile will not create a display context or renderable window for the tile. That responsibility is
left to the calling application. When using IceT in single-tile rendering mode, the rendering system
should be set to produce images of that single tile’s size. When driving a physical tiled display,
each display process must create a window that covers the entire display. It is also a good idea to
disable the mouse cursor in these windows.

Note that the size of the tiles do not have to match each other. Also, the size of the images that
your application generates do not have to match the size of any of the tiles. There is, however, a
constraint that the generated images on all processes must be at least as large as the largest tile in
each dimension. To help you maintain that constraint, IceT stores the largest tile dimensions in the
ICET TILE MAX WIDTH and ICET TILE MAX HEIGHT state variables.

IceT must know in advanced the size of images that your application will render. If you are us-
ing IceT’s OpenGL layer, IceT will automatically know the size of the images you generate based

33

off of the current OpenGL viewport (retrieved with the GL VIEWPORT OpenGL state variable).
Otherwise, you can specify the size of images the application generates with icetPhysical-
RenderSize. If you are not using the OpenGL layer and you have not called icetPhysical-
RenderSize, IceT assumes that you will generate images of width ICET TILE MAX WIDTH
and height ICET TILE MAX HEIGHT. The actual expected rendered image size is stored in the
ICET PHYSICAL RENDER WIDTH and ICET PHYSICAL RENDER HEIGHT state variables.

Although counterintuitive, it is often more efficient to create images that are larger than any
tile. This situation may be necessary when using image inflation (see Chapter 4). Even when not
using image inflation, larger rendered images can save a significant amount of rendering time. IceT
can use the larger images to potentially render in one shot an object that is larger than any of the
tiles.

Strategies

IceT contains several algorithms for performing image compositing. The overall algorithm
used to render and composite an image is called a strategy, named after the “Gang of Four” strategy
pattern.2 The strategy is set using the icetStrategy function.

void icetStrategy(IceTEnum strategy);

IceT defines the following strategies that can be passed to icetStrategy. These strategies
are discussed in more detail in Chapter 5.

ICET STRATEGY SEQUENTIAL Basically applies a “traditional” single tile composition (such
as binary swap) to each tile in the order they were defined. Because each process must take
part in the composition of each tile regardless of whether they draw into it, this strategy
is usually inefficient when compositing for more than one tile, but is recommended for the
single tile case because it bypasses some of the communication necessary for the other multi-
tile strategies.

ICET STRATEGY DIRECT As each process renders an image for a tile, that image is sent di-
rectly to the process that will display that tile. This usually results in a few processes receiv-
ing and processing the majority of the data, and is therefore usually an inefficient strategy.

ICET STRATEGY SPLIT Like ICET STRATEGY DIRECT, except that the tiles are split up,
and each process is assigned a piece of a tile in such a way that each process receives and
handles about the same amount of data. This strategy is often very efficient, but due to the
large amount of messages passed, it has not proven to be very scalable or robust.

2Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. Addison-Wesley, 1994. ISBN
0-201-63361-2.

34

ICET STRATEGY REDUCE A two phase algorithm. In the first phase, tile images are redis-
tributed such that each process has one image for one tile. In the second phase, a “traditional”
single tile composition is performed for each tile. Since each process contains an image for
only one tile, all these compositions may happen simultaneously. This is a well rounded
strategy that seems to perform well in a wide variety of multi-tile applications. (However, in
the special case where only one tile is defined, the sequential strategy is probably better.)

ICET STRATEGY VTREE An extension to the binary tree algorithm for image composition. Sets
up a “virtual” composition tree for each tile image. Processes that belong to multiple trees
(because they render to more than one tile) are allowed to float between trees. This strategy
is not quite as well load balanced as ICET STRATEGY REDUCE or ICET STRATEGY -
SPLIT, but has very well behaved network communication.

You can get a human-readable name using the icetGetStrategyName function.

const char *icetGetStrategyName(void);

The algorithms in IceT’s strategies are specially designed to composite data defined on multiple
tiles. Some of these algorithms, namely ICET STRATEGY REDUCE and ICET STRATEGY -
SEQUENTIAL, operate at least in part by compositing single images together. IceT also comes
with multiple separate strategies for performing this single image compositing, and this can be
selected with the icetSingleImageStrategy function.

void icetSingleImageStrategy(IceTEnum strategy);

IceT defines the following single image strategies that can be passed to icetSingleIm-
ageStrategy. These strategies are discussed in more detail in Chapter 5.

ICET SINGLE IMAGE STRATEGY AUTOMATIC Automatically chooses which single image
strategy to use based on the number of processes participating in the composition.

ICET SINGLE IMAGE STRATEGY BSWAP The classic binary swap compositing algorithm. At
each phase of the algorithm, each process partners with another, sends half of its image to
its partner, and receives the opposite half from its partner. The processes are then partitioned
into two groups that each have the same image part, and the algorithm recurses.

ICET SINGLE IMAGE STRATEGY RADIXK The radix-k acompositing algorithm is similar to
binary swap except that groups of processes can be larger than two. Larger groups require
more overall messages but overlap blending and communication. The size of the groups is
indirectly controlled by the ICET MAGIC K environment variable or CMake variable.

ICET SINGLE IMAGE STRATEGY TREE At each phase, each process partners with another,
and one of the processes sends its entire image to the other. The algorithm recurses with the
group of processes that received images until only one process has an image.

35

By default IceT sets the single image strategy to ICET SINGLE IMAGE STRATEGY AUTO-
MATIC when a context is created. This is the single image strategy that will be used if no other is
selected.

You can get a human-readable name using the icetGetSingleImageStrategyName
function.

const char *icetGetSingleImageStrategyName(void);

Drawing Callback

Most compositing engines will simply take a group of images and combine them together.
This approach, however, is unreasonable when compositing the high resolution images on a large
tiled display. It is problematic for an application to create images larger than any color buffer the
rendering hardware can create, and holding many of these large images can lead to a large memory
profile.

Instead, the IceT algorithms deal with pieces of the overall image. The image pieces are created
on demand. As such, IceT may require the same geometry to be rendered multiple times in a single
frame. IceT provides the application with the most flexible way to define the rendering process:
with a drawing callback.

A drawing callback is simply a function that your application provides IceT. When IceT needs
an image, it will provide the drawing callback with the projection matrices for the section of the
display being rendered. The drawing callback then returns the image rendered to those projection
matrices.

IceT may call the drawing callback several times to create a single tiled image or not at all if the
current bounds lie outside the current view frustum. This can have a subtle but important impact
on the behavior of the drawing callback. For example, counting frames by incrementing a frame
counter in the drawing callback is obviously wrong (although you could count how many times a
render occurs). The drawing callback should also leave the rendering system in a state such that it
will be correct for a subsequent run of the drawing callback. Any state that is assumed to be true
on entrance to the drawing callback should also be true on return.

GENERIC DRAWING CALLBACK

There are two versions of drawing callbacks. The first version is a generic callback set with
icetDrawCallback. This callback is used in conjunction with the icetDrawFrame function
(described in the next section).

36

typedef void (*IceTDrawCallbackType)(
const IceTDouble * projection matrix,
const IceTDouble * modelview matrix,
const IceTFloat * background color,
const IceTInt * readback viewport,
IceTImage result)

void icetDrawCallback(IceTDrawCallbackType callback);

callback takes two projection matrices: projection matrix and modelview ma-
trix. Each of these arguments is a 16-value array that represents a 4× 4 transformation of ho-
mogeneous coordinates. The arrays store the matrices in column-major order. Thus, if the values
in projection matrix are (p[0], p[1], ...p[15]) and the values in modelview matrix are
(m[0],m[1], ...m[15]), then a vertex in object space is transformed into normalized screen coordi-
nates by the sequence of operations


p[0] p[4] p[8] p[12]
p[1] p[5] p[9] p[13]
p[2] p[6] p[10] p[14]
p[3] p[7] p[11] p[15]




m[0] m[4] m[8] m[12]
m[1] m[5] m[9] m[13]
m[2] m[6] m[10] m[14]
m[3] m[7] m[11] m[15]




v[0]
v[1]
v[2]
v[3]


More explicitly, if you have a point (x,y,z,1) in object space stored in a variable object -

coord, you could transform that to world space in the callback with code like this.

for (row = 0; row < 4; row++) {
world_coord[row] = 0.0;
for (i = 0; i < 4; i++) {

world_coord[row] += modelview_matrix[row + 4*i] * object_coord[i];
}

}

Likewise, to transform the world coord to normalized screen coordinates, you could apply the
following code.

for (row = 0; row < 4; row++) {
screen_coord[row] = 0.0;
for (i = 0; i < 4; i++) {

screen_coord[row] += projection_matrix[row + 4*i] * world_coord[i];
}

}

If your rendering system has no need to find the world coordinates of points, you can combine
the two matrices by multiplying them together like this.

37

for (row = 0; row < 4; row++) {
for (column = 0; column < 4; column++) {

full_matrix[row + 4*column] = 0.0;
for (i = 0; i < 4; i++) {

full_matrix[row + 4*column] +=
projection_matrix[row + 4*i] * modelview_matrix[k + 4*column];

}
}

}

Normalized screen coordinates are such that everything projected onto the image has coor-
dinates in the range [−1,1] (after dividing by the “w” homogeneous coordinate). The x and y
coordinates have to be shifted to get the corresponding pixel location. The normalized screen
coordinates are projected to span the physical render size (see icetPhysicalRenderSize),
which may differ from the size of any particular tile. Also, if you are outputting depth values, IceT
expects values in the range [0,1], so you will have to shift those as well. Here is a pedantic code
segment to do this final transformation.

icetGetIntegerv(ICET_PHYSICAL_RENDER_WIDTH, &image_width);
icetGetIntegerv(ICET_PHYSICAL_RENDER_HEIGHT, &image_height);
/* Alternatively, you could get the width and height from the image passed */
/* to the callback like this. */
/* image_width = icetImageGetWidth(result); */
/* image_height = icetImageGetHeight(result); */
pixel_x = (int)(image_width*0.5*(screen_coord[0]/screen_coord[3] + 1.0));
pixel_y = (int)(image_height*0.5*(screen_coord[1]/screen_coord[3] + 1.0));
depth = 0.5*(screen_coord[2]/screen_coord[3] + 1.0);

The drawing callback should initialize its backdrop to the background color, which may
be different than the background color passed to icetDrawFrame.

The resulting image should be rendered (or copied) into the IceTImage, result, passed to
the callback. The image will be sized by the physical render width and height and its format will
conform to that set by icetSetColorFormat and icetSetDepthFormat. You can get the
buffers of the image with the icetImageGetColor and icetImageGetDepth functions.
Data written to these buffers will become part of the image. IceT’s image functions are described
in more detail in the following section starting on page 43.

IceT will always send the drawing callback an image sized by the physical render viewport
specified by icetPhysicalRenderSize for convenience. However, IceT often needs only a
subset of these pixels. IceT tells the drawing callback the pixels it actually uses with the read-
back viewport parameter. readback viewport contains 4 integers specifying a region of
pixels that IceT will use. The first two value specify the lower-left corner of the region and the
next two specify the width and height of the region.

38

For example, if the readback viewport is set to (10,15,100,75), then IceT will use only
the pixels in the square between x values 10 and 109 and y values between 15 and 89 (both inclu-
sive). All other pixels in the image will be ignored. It is not an error to provide values for the other
pixels, but it is a waste of computation.

OPENGL DRAWING CALLBACK

If you are rendering with OpenGL, then you can remove many of the complexities of defining
a callback by using icetGLDrawCallback in conjunction with icetGLDrawFrame.

typedef void (* IceTGLDrawCallbackType)(void);

void icetGLDrawCallback(IceTGLDrawCallbackType callback);

The OpenGL version of the drawing callback takes no arguments. It simply issues the appro-
priate OpenGL calls to render the geometry. IceT internally takes care of setting the appropri-
ate transformations and clear color, and then reads back your data from the buffer specified by
icetGLSetReadBuffer after the drawing callback returns.

The OpenGL drawing callback should not modify the GL PROJECTION MATRIX as this
would cause IceT to place image data in the wrong location in the tiled display and improperly cull
geometry. It is acceptable to add transformations to GL MODELVIEW MATRIX, but the bound-
ing vertices given with icetBoundingVertices or icetBoundingBox (see the following
section) are assumed to already be transformed by any such changes to the modelview matrix.
Also, GL MODELVIEW MATRIX must be restored before the draw function returns. Therefore,
any changes to GL MODELVIEW MATRIX are to be done with care and should be surrounded by
a pair of glPushMatrix and glPopMatrix functions.

It is also important that the OpenGL drawing callback not attempt the change the clear color.
In some compositing modes, IceT needs to read, modify, and change the background color. These
operations will be lost if the drawing callback changes the background color, and severe color
blending artifacts may result.

SPECIFYING GEOMETRY BOUNDS

IceT can nominally call the drawing callback for every tile in the display. However, in almost
any real application each process has data that demonstrates some spatial locality that causes it to
be projected on a relatively small section of the display. To give IceT the information it needs to
prevent unnecessary renders, the application needs to provide the bounds of the local geometry.
This is done using either the icetBoundingVertices or the icetBoundingBox function.

39

void icetBoundingVertices(IceTInt size,
IceTEnum type,
IceTSizeType stride,
IceTSizeType count,
const IceTVoid * pointer);

void icetBoundingBoxd (IceTDouble x min,
IceTDouble x max,
IceTDouble y min,
IceTDouble y max,
IceTDouble z min,
IceTDouble z max);

void icetBoundingBoxf (IceTFloat x min,
IceTFloat x max,
IceTFloat y min,
IceTFloat y max,
IceTFloat z min,
IceTFloat z max);

With the icetBoundingVertices function, you specify a set of vertices whose convex
hull completely contains the geometry. The icetBoundingBox function is a convenience func-
tion that defines the container as an axis aligned bounding box.

Rendering

Once you have set up the IceT state as described in the previous sections of this chapter, you
are ready to perform parallel rendering. Rendering is initiated in IceT by calling one of the draw
frame functions.

GENERIC RENDERING

There are two frame drawing functions. The first version is independent of the rendering system
and is used in conjunction with the callback set with icetDrawCallback. It is performed by
calling icetDrawFrame.

IceTImage icetDrawFrame(const IceTDouble * projection matrix,
const IceTDouble * modelview matrix,
const IceTFloat * background color);

Conceptually, calling icetDrawFrame is similar to calling the drawing callback directly.
The arguments projection matrix, modelview matrix, and background color are
the same as you would potentially pass the callback (although IceT is free to change them).

40

The projection matrix and modelview matrix are 16-value arrays that represent
4×4 transformations of homogeneous coordinates. The arrays store the matrices in column-major
order. Thus, if the values in projection matrix are (p[0], p[1], ...p[15]) and the values in
modelview matrix are (m[0],m[1], ...m[15]), then a vertex in object space is transformed into
normalized screen coordinates by the sequence of operations

For example, if your modelview matrix used a simple translation to move the geometry in front
of the camera, you would use a matrix like this.


1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1


The code to set the modelview matrix could look like this.

modelview_matrix[0] = 1.0;
modelview_matrix[1] = 0.0;
modelview_matrix[2] = 0.0;
modelview_matrix[3] = 0.0;

modelview_matrix[4] = 0.0;
modelview_matrix[5] = 1.0;
modelview_matrix[6] = 0.0;
modelview_matrix[7] = 0.0;

modelview_matrix[8] = 0.0;
modelview_matrix[9] = 0.0;
modelview_matrix[10] = 1.0;
modelview_matrix[11] = 0.0;

modelview_matrix[12] = x;
modelview_matrix[13] = y;
modelview_matrix[14] = z;
modelview_matrix[15] = 1.0;

As another example, consider setting the projection matrix for the perspective of a camera
sitting at the origin facing down the −z axis. You could use a transformation matrix like this.


f ·height
width 0 0 0

0 f 0 0
0 0 −1 −2near
0 0 −1 0


f = cotangent

(
f ovy

2

)
41

The code to set the projection matrix could look like this.

/* width, height: image dimensions */
/* fovy: field of view in the y direction */
/* zNear: distance from camera (at origin) to near clipping plane (at -zNear). */

f = 1.0/tan(0.5*fovy);

projection_matrix[0] = (f*height)/width;
projection_matrix[1] = 0.0;
projection_matrix[2] = 0.0;
projection_matrix[3] = 0.0;

projection_matrix[4] = 0.0;
projection_matrix[5] = f;
projection_matrix[6] = 0.0;
projection_matrix[7] = 0.0;

projection_matrix[8] = 0.0;
projection_matrix[9] = 0.0;
projection_matrix[10] = -1.0;
projection_matrix[11] = -1.0;

projection_matrix[12] = 0.0;
projection_matrix[13] = 0.0;
projection_matrix[14] = -2*zNear;
projection_matrix[15] = 0.0;

The background color is the color in which the background should be initialized. It is the
color of “empty” pixels and also the color to be blended with any transparent geometry.

icetDrawFrame returns an IceTImage containing the composited image displayed on this
process. If the process is not displaying a tile, then the contents of the image is undefined.

OPENGL RENDERING

If you are rendering with OpenGL, then you can remove many of the complexities of defining
projection matrices and displaying images by using the icetGLDrawFrame function in conjunc-
tion with the drawing callback set with icetGLDrawCallback.

void icetGLDrawFrame(void);

icetGLDrawFrame is called in basically the same way as the OpenGL drawing callback
would be called directly. First, establish the OpenGL state. Setting up the GL PROJECTION -
MATRIX before calling icetGLDrawFrame is essential. It is also advisable to set up what-

42

ever transformations in the GL MODELVIEW MATRIX that you can before calling icetGL-
DrawFrame. IceT will use and modify these two matrices to render regions of the tiled display.
The drawing callback should behave as if neither of the matrices were modified.

By the time icetGLDrawFrame completes, an image will have been completely rendered
and composited. If ICET GL DISPLAY is enabled, then the fully composited image is written
back to the OpenGL frame buffer for display. It is the application’s responsibility to synchro-
nize the processes and swap front and back buffers. The image remaining in the frame buffer is
undefined if ICET GL DISPLAY is disabled or the process is not displaying a tile.

If the OpenGL background color is set to something other than black, ICET GL DISPLAY -
COLORED BACKGROUND should also be enabled. Displaying with ICET GL DISPLAY COL-
ORED BACKGROUND disabled may be slightly faster (depending on graphics hardware) but can
result in black rectangles in the background.

If ICET GL DISPLAY INFLATE is enabled and the size of the renderable window (deter-
mined by the current OpenGL viewport) is greater than that of the tile being displayed, then the
image will first be “inflated” to the size of the actual display. If ICET GL DISPLAY INFLATE is
disabled, the image is drawn at its original resolution at the lower left corner of the display. More
details on image inflation are given in Chapter 4.

Regardless of whether it writes the fully composited image back to the display, icetGL-
DrawFrame returns an IceTImage containing the composited image displayed on this process.
If the process is not displaying a tile, then the contents of the image is undefined.

Image Objects

IceT uses a data type called IceTImage to store and pass around image data. To get image
data from a generic drawing callback (described previously starting on page 36), IceT passes the
callback an IceTImage sized to hold an image of the appropriate dimensions. Likewise, the
frame drawing functions (described previously starting on page 40) return an IceTImage. An
IceTImage is intended to be an opaque object that is accessed by a suite of functions provided
by IceT.

IceT defines a special null image that can be used as a place holder when no image data is
available. You can create and check for null images with the icetImageNull and icetIm-
ageIsNull functions, respectively.

IceTImage icetImageNull(void);

IceTBoolean icetImageIsNull(IceTImage image);

It is good defensive programming to initialize IceTImage objects to null on creation. That
way, all of IceT’s images functions will always behave appropriately on the image, whereas the

43

behavior is unpredictable if the IceTImage is uninitialized.

IceTImage image = icetImageNull();

The functions icetImageGetWidth, icetImageGetHeight, and icetImageGet-
NumPixels return the dimensions of an image.

IceTSizeType icetImageGetWidth (const IceTImage image);
IceTSizeType icetImageGetHeight (const IceTImage image);
IceTSizeType icetImageGetNumPixels (const IceTImage image);

An IceTImage can hold color data, depth data, or both. Furthermore, colors and depths can
be stored in different formats. The internal formats for colors and depths for an IceTImage
can be retrieved with the icetImageGetColorFormat and icetImageGetDepthFor-
mat functions, respectively.

IceTEnum icetImageGetColorFormat (const IceTImage image);
IceTEnum icetImageGetDepthFormat (const IceTImage image);

The format specifies the basic data type, the packing, and whether the color or depth data is
available at all. Here is a list of possible color formats.

ICET IMAGE COLOR RGBA UBYTE Each entry is an RGBA color tuple. Each component
is valued in the range from 0 to 255 and is stored as
an 8-bit integer. The buffer will always be allocated
on memory boundaries such that each color value can
be treated as a single 32-bit integer.

ICET IMAGE COLOR RGBA FLOAT Each entry is an RGBA color tuple. Each component
is in the range from 0.0 to 1.0 and is stored as a 32-bit
float.

ICET IMAGE COLOR NONE No color values are stored in the image.

Here is a list of possible depth formats.

ICET IMAGE DEPTH FLOAT Each entry is in the range from 0.0 (near plane) to 1.0
(far plane) and is stored as a 32-bit float.

ICET IMAGE DEPTH NONE No depth values are stored in the image.

An IceTImage stores the color and depth data in separate buffers. You can use the ice-
tImageGetColor and icetImageGetDepth functions to retrieve pointers to this data. A
drawing callback must use these functions to get buffers to write data into.

44

IceTUByte * icetImageGetColorub (IceTImage image);
IceTUInt * icetImageGetColorui (IceTImage image);
IceTFloat * icetImageGetColorf (IceTImage image);

IceTFloat * icetImageGetDepthf (IceTImage image);

const IceTUByte * icetImageGetColorcub (const IceTImage image);
const IceTUInt * icetImageGetColorcui (const IceTImage image);
const IceTFloat * icetImageGetColorcf (const IceTImage image);

const IceTFloat * icetImageGetDepthcf (const IceTImage image);

The various forms of icetImageGetColor and icetImageGetDepth return typed ar-
rays for the buffer of data. The type of the data must conform to the internal format of the data; the
functions will raise an error otherwise.

If you want to use image data of a specific format, you can use one of the icetImageCopy-
Color or icetImageCopyDepth functions. With these functions, you give an allocated array
and a specific color format, and the data for that array will be copied into your buffer in the desired
format.

void icetImageCopyColorub (const IceTImage image,
IceTUByte * color buffer,
IceTEnum color format);

void icetImageCopyColorf (const IceTImage image,
IceTFloat * color buffer,
IceTEnum color format);

void icetImageCopyDepthf (const IceTImage image,
IceTFloat * depth buffer,
IceTEnum depth format);

45

46

Chapter 4

Customizing Compositing

If you have been reading this document from the beginning, then you already know enough to
use IceT for many typical rendering applications. Chapters 2 and 3 describe how to build and link
IceT, establish an IceT context in your application, and to leverage IceT to make your rendering
parallel. This chapter describes the many features IceT provides to let you customize the image
compositing to your application.

Compositing Operation

IceT is classified as a sort-last type of parallel rendering library, as discussed in Chapter 1.
Basically, this means that each process renders images independently, and then these images, each
comprising a different partition of the geometry, are combined together in a process called com-
positing.

To combine two images together, a compositing operation is applied to every corresponding
pair of pixels. Three or more images are combined by applying the compositing operation multiple
times to eventually reduce everything to one image. (The compositing operations supported by
IceT are associative, so the order is flexible. IceT takes advantage of this fact to efficiently perform
the compositing in parallel.)

IceT supports two compositing operations, set with icetCompositeMode.

void icetCompositeMode(IceTEnum mode);

The first type of compositing operation, ICET COMPOSITE MODE Z BUFFER, is a depth
comparison and the other, ICET COMPOSITE MODE BLEND, is an alpha blend. The depth com-
parison is a bit faster and is easier to use, but only works for opaque surfaces. If you are performing
volume rendering, the translucent rendering of 3-dimensional volumes, or any other rendering that
involves transparent data, then you will have to use the alpha blend compositing operation.

Each compositing operation relies on certain buffers to exist (or not exist) in images. For ex-
ample, z-buffer compositing can use a color buffer and requires a depth buffer whereas blended
compositing requires a color buffer and cannot work with a depth buffer. The buffers created in
images by IceT, and their formats, is controlled by the icetSetColorFormat and icetSet-

47

DepthFormat functions. It is important to ensure that the setting for icetCompositeMode
is compatible with the settings for icetSetColorFormat and icetSetDepthFormat.

void icetSetColorFormat (IceTEnum color format);
void icetSetDepthFormat (IceTEnum depth format);

The following color formats are valid for use in icetSetColorFormat.

ICET IMAGE COLOR RGBA UBYTE Each entry is an RGBA color tuple. Each component
is valued in the range from 0 to 255 and is stored as
an 8-bit integer. The buffer will always be allocated
on memory boundaries such that each color value can
be treated as a single 32-bit integer.

ICET IMAGE COLOR RGBA FLOAT Each entry is an RGBA color tuple. Each component
is in the range from 0.0 to 1.0 and is stored as a 32-bit
float.

ICET IMAGE COLOR NONE No color values are stored in the image.

The following depth formats are valid for use in icetSetDepthFormat.

ICET IMAGE DEPTH FLOAT Each entry is in the range from 0.0 (near plane) to 1.0
(far plane) and is stored as a 32-bit float.

ICET IMAGE DEPTH NONE No depth values are stored in the image.

Z-BUFFER COMPOSITING

Z-buffer compositing takes advantage of the same hidden surface removal already taking place
in the OpenGL pipeline. IceT pulls the z-buffer (also often known as the depth buffer) from the
OpenGL image buffers. The compositing operation then just compares the depth values of two
pixels and chooses the one that is closer.

Z-buffer compositing is used when the composite mode (set with icetCompositeMode)
is ICET COMPOSITE MODE Z BUFFER. Z-buffer compositing also requires a depth buffer. An
error will occur during compositing if z-buffer compositing is being used without a depth buffer
(i.e. icetSetDepthFormat is set to ICET IMAGE DEPTH NONE.)

By default, z-buffer compositing is enabled and both the the color and the depth buffer are
selected as input buffers. Also by default IceT will not produce a depth buffer. (Not computing
the depth buffer may save some network transfer time.) This behavior is controlled by the ICET -
COMPOSITE ONE BUFFER option, which is enabled by default.

48

If you need the depth buffer composited in addition to the color buffer (for example, to help with
a picking operation), you can do so by simply disabling the ICET COMPOSITE ONE BUFFER
option.

icetCompositeMode(ICET_COMPOSITE_MODE_Z_BUFFER);
icetSetColorFormat(ICET_IMAGE_COLOR_RGBA_UBYTE);
icetSetDepthFormat(ICET_IMAGE_DEPTH_FLOAT);
icetDisable(ICET_COMPOSITE_ONE_BUFFER);

Alternatively, if you only need the depth buffer (for example, as a shadow map), you can do
so by setting the color format to ICET IMAGE COLOR NONE. In this case, the ICET COMPOS-
ITE ONE BUFFER option will have no effect

icetCompositeMode(ICET_COMPOSITE_MODE_Z_BUFFER);
icetSetColorFormat(ICET_IMAGE_COLOR_NONE);
icetSetDepthFormat(ICET_IMAGE_DEPTH_FLOAT);

VOLUME RENDERING (AND OTHER TRANSPARENT OBJECTS)

A well known limitation to z-buffer compositing — and the z-buffer hidden surface removal
algorithm in general — is that it only works with opaque objects. You will get invalid results if
you try to apply z-buffer compositing on transparent objects.

There are two fundamental problems with the z-buffer compositing operation when dealing
with translucent pixels. The first problem is that you cannot simply pick the nearest color value.
You must blend the front pixel’s color with the back pixel’s color. The second problem is that
the color blending is order dependent. That is, you have to know which pixels are in front of
others. Although it is technically possible to use z-buffer values to determine the ordering of a pair
of pixels, making sure that all the pixels get composited in the correct order requires additional
information about and constraints on the geometry.

When z-buffer compositing is not applicable, you must use blended compositing. To use
blended compositing, set the composite mode (with icetCompositeMode) to ICET COMPOS-
ITE MODE BLEND and turn off depth buffers (i.e. icetSetDepthFormat is set to ICET IM-
AGE DEPTH NONE).

icetCompositeMode(ICET_COMPOSITE_MODE_BLEND);
icetSetColorFormat(ICET_IMAGE_COLOR_RGBA_UBYTE);
icetSetDepthFormat(ICET_IMAGE_DEPTH_NONE);

The blending composite operator relies on the alpha (α) channel of the color buffer (the A
in RGBA colors). Note that when using OpenGL, the alpha values must actually be available in

49

the OpenGL color buffers in order for blended compositing to work. Many applications create
OpenGL buffers without alpha bit planes in them because they are often not necessary to render
images in serial. Make sure your application creates alpha bit planes before attempting to compos-
ite translucent images with IceT (or any other library).

The blending operation is the standard over/under operator defined in the seminal 1984 Porter
and Duff paper.

Co←C f +Cb(1−α f) (4.1)

where C is an RGBA color vector, α is the alpha component of a color vector, and the f , b, and o
subscripts denote the front, back, and output values, respectively.

Each color in Equation 4.1 represents a pre-multiplied color, meaning that the red, green,
and blue values are scaled by the alpha parameter. Thus, a fully red color at half transparency
is represented by the vector 〈0.5,0,0,0.5〉 rather than 〈1,0,0,0.5〉. In pre-multiplied colors, none
of the red, green, or blue values ever exceed the alpha value. Note that colors are often provided
in OpenGL as non-pre-multiplied values, and the blending equation Co ← C f α f +Cb(1−α f) is
used instead of the one in Equation 4.1. Although this blending gives the correct RGB color, it
computes an invalid alpha parameter, so watch out!

Simply turning on blended compositing is not sufficient to render translucent objects. You
must also tell IceT to perform ordered compositing. In ordered compositing, you must have a
visibility ordering. Given any two processes, a visibility ordering ensures and determines that all
of the geometry in one process is in front of or behind all the geometry in each of the other process
with respect to the camera. In some cases, such as when volume rendering a 3D Cartesian grid of
points distributed in blocks to processes, finding the visibility ordering is straightforward. In other
cases, such as when rendering unstructured collections of polygons or polyhedra, it can be difficult
to ensure that a visibility ordering exists and can be found. Doing so may be the most challenging
part of creating a parallel rendering application. An example of creating a visibility ordering from
unstructured data can be found in the ParaView application, and the implementation is detailed in
the following paper:

Kenneth Moreland, Lisa Avila, and Lee Ann Fisk. “Parallel Unstructured Volume
Rendering in ParaView,” In Visualization and Data Analysis 2007, Proceedings of
SPIE-IS&T Electronic Imaging, January 2007, pp. 64950F-1–12.

Ordered compositing is turned on by simply passing the ICET ORDERED COMPOSITE flag
to icetEnable.

icetEnable(ICET_ORDERED_COMPOSITE);

Once ordered compositing is enabled, it is very important to use icetCompositeOrder to
specify the visibility order of the geometry associated with each process. This must generally be
done before each call to icetDrawFrame or icetGLDrawFrame.

50

void icetCompositeOrder(const IceTInt * process ranks);

The icetCompositeOrder function takes an array of processes. It is assumed that the
geometry of the first process in the list is in front of the rest of the processes; the geometry of the
second process in the list is in front of all the processes except the first, and so on. The visibility
order often changes when the camera angle changes, so it is important to recompute and report a
new composite order on every frame.

Be aware that not all strategies support ordered compositing. If the current strategy does not
support ordered compositing, then the ICET ORDERED COMPOSITE flag is ignored. Consult the
documentation in Chapter 5 or the documentation for the icetStrategy command to determine
which strategies support ordered compositing. In any case, you can check the ICET STRATEGY -
SUPPORTS ORDERING state variable to determine if the current compositing strategy supports
ordered compositing.

One final thing to worry about when using blended compositing is to make sure that the back-
ground color does not interfere with the compositing. Because the visibility order is important, you
need to make sure that none of the processes render with a background (except perhaps the process
nearest the rear). For example, let us say you want to render an image with a blue background. Let
us also say that process A’s geometry is in front of process B’s geometry. Process A cannot render
its geometry on top of a blue background because that background should really also be behind the
geometry of process B, and the resulting image will be invalid.

If your background is a solid color, then IceT can fix this problem automatically. Both
icetDrawFrame and icetGLDrawFrame have the ability take a solid background color and
modify it as appropriate for compositing. icetDrawFrame takes the background color as an
explicit parameter whereas icetGLDrawFrame implicitly gets the background color from the
OpenGL clear color.

When the ICET CORRECT COLORED BACKGROUND feature is enabled and blended com-
positing is on, IceT will change the background to 〈0,0,0,0〉, perform the rendering and composit-
ing, and blend the result into the specified background color.

If you are using icetGLDrawFrame to render with the OpenGL layer and if you do not
actually need to use the image returned from icetGLDrawFrame, you can use the ICET GL -
DISPLAY COLORED BACKGROUND option instead.

ICET GL DISPLAY COLORED BACKGROUND operates similar to ICET CORRECT COL-
ORED BACKGROUND with the exception that it uses the OpenGL graphics hardware to blend the
composited image to the colored background, and may therefore get a modest performance in-
crease. However, it also means that the result will not be available in the memory buffer returned
by icetGLDrawFrame.

51

Image Inflation

Because IceT is an image-based sort-last parallel rendering library, its overhead is proportional
to the size of the images being generated. Thus, large displays can limit the maximum rendering
frame rate that can be achieved.

A simple way to increase the frame rate is to reduce the resolution of the images being dis-
played. If the display resolution is larger than necessary (and “larger than necessary” is a flexible
metric that can change regularly as an application runs), then you can render smaller images and
then inflate the images to fill the display. A major use case for a reduced resolution image is for
maintaining application interactivity. Many applications, particularly visualization applications,
contain bursts of interactivity. The user will interact with the data (move the camera or objects)
and then hold still and analyze the results. While interacting, application responsiveness is much
more important than image details, so during this time a lower resolution image can be rendered
and inflated. When the user stops interacting and starts analyzing, a full resolution image can be
created.

You can instruct IceT to render and composite smaller images by simply specifying a lower
resolution display with the icetAddTile function. If you are frequently switching the resolution
of the images being generated (which is common), then you can use IceT state management to
switch states. First, use icetCreateContext and icetCopyState to create a duplicate
state. Then change the display of one of the states to a lower resolution with icetAddTile.
As the application runs, use icetSetContext to swap between the different resolutions. See
Chapter 3 for details on using these functions.

Between rendering and display, the smaller images must be inflated to fill the display. An
application can always perform this inflation itself (and that is probably necessary if the im-
ages are shipped to a remote display). When using IceT’s OpenGL layer (i.e. rendering with
calls to icetGLDrawFrame) and IceT is displaying the data (i.e. ICET GL DISPLAY is en-
abled), IceT has the ability to automatically inflate the images. Turn on this feature by enabling
ICET GL DISPLAY INFLATE. IceT contains two modes for inflating images: using the CPU or
using texture mapping in OpenGL. When ICET GL DISPLAY INFLATE WITH HARDWARE is
enabled (the default), then texture mapping is used. In either case, icetGLDrawFrame returns
the smaller image size specified by icetAddTile.

One final note: Regardless of what size you set for the displays in icetAddTile, you should
render images as large as possible (by setting icetPhysicalRenderSize or glViewport
as large as possible). The size of the rendered images and the size of the tile images can be
different so long as each rendered image is at least as large as the largest tile image. In fact, it is
advantageous to have the rendered images larger than the specified tiles. The first reason is that the
ICET GL DISPLAY INFLATE feature fills the image to the OpenGL viewport. If the dimensions
the two are the same, then no inflation will actually take place. The second reason is that IceT will
use the entire renderable space. For a multi-tile display, this can dramatically reduce the number of
times the render callback needs to be called. Thus, in general it is best to keep the rendered images
as large as possible.

52

Figure 4.1. Even though geometry may straddle tile boundaries,
we may be able to render it all in one pass by “floating” the view-
port.

Floating Viewport

Consider the geometry shown in Figure 4.1 that projects onto a screen space that fits within a
single tile but is moved in the horizontal and vertical directions so that it straddles four tiles. If the
system limits itself to projecting onto physical tiles, the processor must render four images even
though it could generate a single image that contains the entire geometry with the exact same pixel
spacing. Instead of rendering four tiles, IceT can float the viewport in the global display to the
space straddling the tiles. That is, IceT may project the geometry to the space shown by the dotted
line in Figure 4.1 and split the resulting image back into pieces that can be displayed directly on
each tile. Hence, the system does not need to render any polygon more than once.

When a processor’s geometry fits within the floating viewport, it can cut the rendering time
dramatically. This is most likely to happen when the number of tiles is small compared to the
number of processors and the spatial coherency of the data is good.

The floating viewport is always enabled by default. You can disable it by calling icetDis-
able with the ICET FLOATING VIEWPORT identifier. In general, there is not much reason to
turn off the floating viewport. The only real reason to turn off the floating viewport is to prevent
IceT from changing the perspective matrix when in single tile mode. However, IceT will change
the perspective matrix anyway when rendering with more than one tile, so any application that
might render to a tiled display should simply leave the floating viewport option on.

53

Active-Pixel Encoding

Because each processor renders only a fraction of the total geometry, the geometry often occu-
pies only a fraction of the screen space in some or all of the tiles in which it lies. Consequently, the
initial images distributed between processors at the beginning of composition often have a signifi-
cant amount of blank space within them. Explicitly sending this data between processors is a waste
of bandwidth. Transferring sparse image data rather than full image data is a well-known way to
reduce network overhead. So far, our best method to do this has been with active-pixel encoding.

Active-pixel encoding is a form of run-length encoding. A traditional run-length encoding
groups pixels into contiguous groups where the color or depth does not change. However, in a
practical 3D rendering, both the color and depth change almost everywhere except in the back-
ground areas where nothing is rendered. To take advantage of this, images are grouped into alter-
nating run lengths of active pixels, pixels that contain geometry information, and inactive pixels,
pixels that have no geometry drawn on them. The active-pixel run length is followed by pairs of
color and depth values (or just one of the two if that is the only data available). The inactive pixels
are not accompanied by any color or depth information. The depth information is assumed to be
of maximum depth, and the color values are ignored since they contain no geometry information.

There are many other ways to encode sparse images and reduce data redundancy. However, we
are particularly enamored with our active-pixel encoding for this application because it exhibits all
of the following properties:

Fast encoding Image encoding requires each pixel to be visited exactly once. Each visit includes
a single alpha or depth comparison, a single addition, and at most one copy.

Free decoding Processors typically perform a compositing as soon as they receive incoming data.
The compositing can be done directly against an image that is still encoded in sparse form.
In fact, the compositing can skip the comparisons for the inactive pixels. Thus doing com-
positing against encoded images is often faster than against unencoded images.

Effective compression During the early stages of composition when the most image data must be
transferred, the sparse data is commonly less than one fifth the size of the original data.

Good worst case behavior No image will ever grow by more than a few bytes of header informa-
tion. Images that have geometry drawn on every pixel will only have one run length. Even
images that alternate between active and inactive status for every pixel, and hence have a run
length for every pixel, do not grow when encoded. The number of bytes required to record
two run lengths, which are stored as 16-bit integers each, is no more than the number of
bytes saved by not recording either color or depth data for a single inactive pixel, which is at
least 32-bits. Thus, there is no penalty for recording run lengths of size one.

Active-pixel encoding is performed automatically during the compositing process. There is
currently no way to turn it off.

54

Interlaced Images

Although active pixel encoding almost always improves the performance of compositing, it
does introduce an issue of load balancing. As images are partitioned, some regions will have
more active pixels than others. By balancing the active pixels assigned to regions, the parallel
compositing becomes better load balanced and performance can improve even further.

The most straightforward way of balancing active pixels is to interlace the images. An image
is interlaced by rearranging pixels in a different order. This reordering of pixels is designed such
that when the images are later partitioned, each partition gets pixels from all over the images.
Consequently, regions with many active pixels are distributed to all the partitions.

Although image interlacing can provide a significant performance increase, it also incurs an
overhead caused by shuffling pixels around. This overhead can potentially happen in two places
during parallel compositing. The first overhead is the shuffling of pixels before any compositing
or message transfers take place. This overhead tends to be low because it occurs when images are
their most sparse and the work is distributed amongst all the processes. The second overhead is
the reshuffling after compositing completes to restore the proper order of the pixels. This second
shuffling is substantial as it happens when images are at their most full and the maximum amount
of pixels must be copied. Furthermore, because pixels must be shuffled over the entire image, this
reshuffling must happen after image data is collected on a single process. Thus, the reshuffling
happens on a single process while all others remain idle.

Classical implementation of image interlacing shuffle pixels in regions, but the regions cho-
sen are usually arbitrary (scanlines is a common region to pick). However, the image interlacing
algorithm in IceT chooses regions that completely avoid the need for the second, and most time
consuming, pixel reshuffling. The algorithm is based on the simple observation that at the comple-
tion of many parallel compositing algorithms, the final image is partitioned and distributed among
all the processes in contiguous pieces. If we arrange our initial shuffling such that each of the
partitions remain a contiguous set of pixels, then we do not need the final reshuffling at all.

IceT’s minimal-copy image interlacing is demonstrated in Figure 4.2. Rather than picking
arbitrary partitions, such as scan lines, to interlace, IceT’s interlacing uses the partitions that the
composite will create anyway. The image with the interlaced block is composited as normal. Each
resulting image partition is already intact, it is only the implicit offsets that need to be adjusted.

Image interlacing is always on by default. It can be turned off by calling icetDisable with
ICET INTERLACE IMAGES. Image interlacing is only a hint, and compositing strategies are not
obligated to follow it. In any case, the observable behavior between interlaced and non-interlaced
images is the same except for in compositing times. In situations where each process renders to
a small portion of an image, the overhead for image interlacing is low but its benefits are high.
However, in cases where every process renders geometry over the entire view (indicative of a poor
distribution of geometry), then the overhead for image interlacing becomes higher but the benefit
becomes lower.

55

Interlace Partitions

Composite

Figure 4.2. Pixel shuffling in IceT’s image interlacing.

Data Replication

The primary advantage of IceT’s parallel rendering algorithms, and sort-last rendering algo-
rithms in general, is that they are very scalable with respect to the size of the input geometry. That
is, there is no overhead to adding more geometry other than the time it takes hardware to render
and there is only a logarithmic overhead for adding processors to the job.

The down side of a sort-last approach is that the image compositing overhead must be incurred
regardless of how little geometry is being rendered. This overhead limits the maximum frame rate
that can be achieved by the parallel rendering. Consequently, the parallel rendering can potentially
be slower than the serial rendering if the amount of geometry being rendered is small.

One possible way to get higher frame rates with smaller geometries would be to switch to a
different parallel rendering mode, but doing so is unnecessarily complicated. Another possibility
is to collect the data on a single process and circumvent the IceT library entirely. This approach is
fine when using single tile mode where the image is displayed at a single location, but is not at all
straightforward when displaying to a tiled display.

IceT provides a better solution than either of the previous two approaches. If the image com-
positing work is dominating the rendering time, you can set up a data replication group. To set
up a data replication group, you partition the geometry using fewer partitions than processes, and

56

then you share each partition with multiple processes. The processes that share a data partition
are a replication group. IceT will divide the compositing work for each replication group amongst
the processes in the group. In essence, you are adding geometry rendering work to remove image
compositing work.

One of the most common uses for data replication groups is to simply replicate the same ge-
ometry on all processes. This is helpful, for example, if your application supports lower levels
of detail for interaction. The lower level of detail can be replicated on all processes. However,
you could also conceivably arrange for any amount of replication between all replicated and none
replicated for a consistently appropriate overhead as the amount of data grows.

To set up data replication groups, it is your responsibility to partition and replicate geometry.
(IceT knows nothing about geometry.) You then report what the data replication groups are with
the icetDataReplicationGroup function.

void icetDataReplicationGroup(IceTInt size,
const IceTInt * processes);

icetDataReplicationGroup simply takes an array defining the replication group that
the local process belongs to. It is important to ensure that all processes belonging to a group provide
the same array to icetDataReplicationGroup. As a convenience, IceT also provides the
icetDataReplicationGroupColor function that allows you to define the data replication
groups by assigning an identifier (i.e. color) to each partition and having each process report the
partition color in which it belongs.

void icetDataReplicationGroupColor(IceTInt color);

As an example, let us say that processes 0–3 share the same geometry, 4–7 share the same
geometry, 8–11 share the same geometry, and so on. These replication groups could be reported
with the following call (where rank is the local process id as stored in the ICET RANK state
variable).

icetDataReplicationGroupColor(rank/4);

The data replication group is stored in the ICET DATA REPLICATION GROUP state variable
(retrievable with icetGet). The length of the group array is stored in ICET DATA REPLI-
CATION GROUP SIZE. The data replication group array is available regardless of whether you
used icetDataReplicationGroup or icetDataReplicationGroupColor to define
the group. The default value is an array with one value: the local process.

Compositing Network Hints

By its nature, image compositing requires a significant amount of communication amongst pro-
cesses in a parallel computer. Each compositing algorithm contained in IceT follows a particular

57

pattern of communication, referred to as its compositing network. These algorithms and their
compositing networks are described in Chapter 5.

Most compositing networks are fixed although a few have some possible variability. Any vari-
ations in the compositing networks are automatically chosen, but it is possible to provide hints.
Because the relative efficiency of different compositing networks is effected more by the underly-
ing hardware than in the application and data running it, these hints are specified by either build
options or by environment variables.

Build options are specified as CMake variables. These CMake variables are set using the
CMake program at the beginning of the build as described in Chapter 2. These variables are listed
as “advanced,” so you will need to turn on advanced variables in the CMake to see them.

For each one of these CMake build variables, IceT also recognizes a corresponding environ-
ment variable with the same name at run time. If the environment variable is defined, it will be
used in place of the option set at run time. The environment variables are read when the IceT
context is first created, so subsequent changes to the environment variables will have no effect.

The following CMake and environment variable hints are available.

ICET MAGIC K The radix-k single image strategy described in Chapter 5 starting on page 66
operates by communicating within groups of processes of size k. IceT’s implementation
of radix-k automatically determines k, but does so by selecting values that are as close
as possible to a magic k value. This magic k value is set with the ICET MAGIC K
CMake build variable or environment variable.

ICET MAX IMAGE SPLIT The parallel image compositing algorithms in IceT maintain load bal-
ancing by dividing images amongst processes to allow the processes to concurrently
composite pixels in independent partitions of the image. Typically, IceT subsequently
collects the images to the display nodes. This collection can be one of the longest
operations during the compositing, particularly when there are many processes. It is
possible to speed up the collection at the expense of the compositing by limiting the
maximum number of times an image may be split. This limit is set with the ICET -
MAX IMAGE SPLIT CMake build variable or environment variable. Be advised that
this option is only a suggestion to compositing. It is still possible for images to be split
beyond this limit. IceT will still behave correctly either way.

These values may be queried (but not set) at runtime using icetGet with a state variable
identifier of the same name.

Image Partition Collection

Many parallel compositing algorithms, including several in IceT, function by partitioning im-
ages and distributing the pieces. These algorithms, described in more detail in Chapter 5, even-

58

tually have a composited image partitioned and distributed among most or all of the processes
involved in the operation.

For most practical purposes, such as displaying the images, the image partitions must be col-
lected, and by default IceT collects each image to its associated display process. However, there
exist some use cases where this collection may not be necessary. For example, if the images are
only to be written to a parallel file system, then it may be as efficient or more efficient to collectively
write partitions from multiple processes.

The collection of image data to the display process may take a significant portion of the overall
compositing time, but it is usually necessary. When it is not necessary, it can be disabled by calling
icetDisable with ICET COLLECT IMAGES. When this option is turned off, the strategy has
the option of leaving images partitioned among processes. Each process containing part of a tile’s
image will return the entire buffer from icetDrawFrame or icetGLDrawFrame in an Ice-
TImage object. However, only certain pixels will be valid. The state variables ICET VALID -
PIXELS TILE, ICET VALID PIXELS OFFSET, and ICET VALID PIXELS NUM give which
tile the pixels belong to and what range of pixels are valid.

The ICET VALID PIXELS TILE state variable gives the tile for which the last image re-
turned from icetDrawFrame or icetGLDrawFrame contains pixels. Each process has its
own value. If the last call to icetDrawFrame or icetGLDrawFrame did not return pixels for
the local process, then this state variable is set to −1.

The ICET VALID PIXELS OFFSET and ICET VALID PIXELS NUM give the range of
valid pixels for the last image returned from icetDrawFrame or icetGLDrawFrame. Given
the arrays of pixels returned with the icetImageGetColor and icetImageGetDepth func-
tions, the valid pixels start at the pixel indexed by ICET VALID PIXELS OFFSET and con-
tinue for ICET VALID PIXELS NUM. The tile to which these pixels belong are captured in the
ICET VALID PIXELS TILE state variable. If the last call to icetDrawFrame or icetGL-
DrawFrame did not return pixels for the local process, ICET VALID PIXELS NUM is set to
0.

The ICET VALID PIXELS TILE, ICET VALID PIXELS OFFSET, and ICET VALID -
PIXELS NUM are only really useful when ICET COLLECT IMAGES is disabled. When ICET -
COLLECT IMAGES is enabled, it is always the case that each display process has the entire im-
age (ICET VALID PIXELS TILE set to the tile, ICET VALID PIXELS OFFSET set to 0 and
ICET VALID PIXELS NUM set to the total image size), and it is always the case that each process
not displaying a tile has no image (ICET VALID PIXELS TILE set to −1 and ICET VALID -
PIXELS NUM set to 0).

Timing (and Other Metrics)

Whenever icetDrawFrame or icetGLDrawFrame is called, IceT measures the amount
of time spent in the various tasks required for parallel rendering. These timings are stored in the

59

IceT state and can be retrieved with icetGet. The state variables containing these timing metrics
(in seconds) are as follows.

ICET RENDER TIME The total time spent in the drawing callback during the last call to
icetDrawFrame or icetGLDrawFrame.

ICET BUFFER READ TIME The total time spent copying buffer data and reading from OpenGL
buffers during the last call to icetDrawFrame or icetGLDrawFrame.

ICET BUFFER WRITE TIME The total time spent writing to OpenGL buffers during the last call
to icetGLDrawFrame. Always set to 0.0 after a call to icetDrawFrame.

ICET COMPRESS TIME The total time spent in compressing image data using active pixel en-
coding during the last call to icetDrawFrame or icetGLDrawFrame.

ICET BLEND TIME /ICET COMPARE TIME The total time spent in performing Z comparisons
or color blending of images during the last call to icetDrawFrame or icetGL-
DrawFrame. These two variables always return the same value.

ICET COLLECT TIME The total time spent in collecting image fragments to display processes
during the last call to icetDrawFrame or icetGLDrawFrame.

ICET TOTAL DRAW TIME The total time spent in the last call to icetDrawFrame or
icetGLDrawFrame. This includes all the time to render, read back, compress, and
composite images.

ICET COMPOSITE TIME The total time spent in compositing during
the last call to icetDrawFrame or icetGLDrawFrame.
Equal to ICET TOTAL DRAW TIME − ICET RENDER TIME −
ICET BUFFER READ TIME−ICET BUFFER WRITE TIME.

In addition to timing how long rendering and compositing takes, IceT also keeps track of how
much data is transmitted during compositing. The state variable ICET BYTES SENT stores the
total number of bytes sent by the calling process for transferring image data during the last call
to icetDrawFrame. Obviously, each process could have a different value for ICET BYTES -
SENT.

IceT also keeps track of the number of times icetDrawFrame or icetGLDrawFrame has
been called. This number is stored in ICET FRAME COUNT.

60

Chapter 5

Strategies

IceT contains several parallel image compositing algorithms. The type of compositing algo-
rithm to use is selected by choosing a strategy. This chapter describes the underlying algorithm of
each strategy. This user’s guide will give qualitative comparisons between the strategies, but for a
more quantitative analysis, see the following paper.

Kenneth Moreland, Brian Wylie, and Constantine Pavlakos. “Sort-last parallel ren-
dering for viewing extremely large data sets on tile displays,” In Proceedings of IEEE
Symposium on Parallel and Large-Data Visualization and Graphics, October 2001,
pp. 85–154.

A strategy is specified using the icetStrategy function.

void icetStrategy(IceTEnum strategy);

The strategy is set to one of the following identifiers.

ICET STRATEGY SEQUENTIAL Basically applies a “traditional” single tile composition (such
as binary swap) to each tile in the order they were defined. Because each process must take
part in the composition of each tile regardless of whether they draw into it, this strategy
is usually inefficient when compositing for more than one tile, but is recommended for the
single tile case because it bypasses some of the communication necessary for the other multi-
tile strategies.

ICET STRATEGY DIRECT As each process renders an image for a tile, that image is sent di-
rectly to the process that will display that tile. This usually results in a few processes receiv-
ing and processing the majority of the data, and is therefore usually an inefficient strategy.

ICET STRATEGY SPLIT Like ICET STRATEGY DIRECT, except that the tiles are split up,
and each process is assigned a piece of a tile in such a way that each process receives and
handles about the same amount of data. This strategy is often very efficient, but due to the
large amount of messages passed, it has not proven to be very scalable or robust.

61

ICET STRATEGY REDUCE A two phase algorithm. In the first phase, tile images are redis-
tributed such that each process has one image for one tile. In the second phase, a “traditional”
single tile composition is performed for each tile. Since each process contains an image for
only one tile, all these compositions may happen simultaneously. This is a well rounded
strategy that seems to perform well in a wide variety of multi-tile applications. (However, in
the special case where only one tile is defined, the sequential strategy is probably better.)

ICET STRATEGY VTREE An extension to the binary tree algorithm for image composition. Sets
up a “virtual” composition tree for each tile image. Processes that belong to multiple trees
(because they render to more than one tile) are allowed to float between trees. This strategy
is not quite as well load balanced as ICET STRATEGY REDUCE or ICET STRATEGY -
SPLIT, but has very well behaved network communication.

A string documenting the current strategy can be retrieved with the icetGetStrategy-
Name function. The following sections describe the strategies in more detail.

To describe the IceT compositing algorithms, we will use the example parallel rendering prob-
lem shown in Figure 5.1 where 6 processes are each rendering their own piece of a shuttle model
to a two tile display.

In this example, processes are denoted, in no particular order, by the colors gray, red, blue,
green, purple, and orange. The colors of the geometry correspond to the process that generated
each piece. Image boarder colors denote the process that generates and holds that image. (Apolo-
gies to those having troubles resolving the colors due to poor display, printout, or vision deficien-
cies. It should not be hard to follow the descriptions either way.)

Single Image Compositing

Before discussing the multi-tile image compositing algorithms implemented by IceT, we visit
the standard single image compositing algorithms. You cannot directly use a single image com-
positing algorithm as a strategy (most of the multi-tile algorithms work well in “single-tile” mode),
but these compositing algorithms are used as “subroutines” in some of the multi-tile algorithms. A
reference to a single image composite network in the subsequent compositing algorithm descrip-
tions refers to the algorithms described here.

You can, however, choose which single image strategy is used by the main multi-tile strategy.
This is selected with the icetSingleImageStrategy function.

void icetSingleImageStrategy(IceTEnum strategy);

The strategy is set to one of the following enumerations.

ICET SINGLE IMAGE STRATEGY AUTOMATIC Automatically chooses which single image
strategy to use based on the number of processes participating in the composition.

62

Figure 5.1. An example of six processes rendering to two tiles
(top) and their composited image (bottom).

ICET SINGLE IMAGE STRATEGY BSWAP The classic binary swap compositing algorithm. At
each phase of the algorithm, each process partners with another, sends half of its image to
its partner, and receives the opposite half from its partner. The processes are then partitioned
into two groups that each have the same image part, and the algorithm recurses.

ICET SINGLE IMAGE STRATEGY RADIXK The radix-k acompositing algorithm is similar to
binary swap except that groups of processes can be larger than two. Larger groups require
more overall messages but overlap blending and communication. The size of the groups is
indirectly controlled by the ICET MAGIC K environment variable or CMake variable.

ICET SINGLE IMAGE STRATEGY TREE At each phase, each process partners with another,
and one of the processes sends its entire image to the other. The algorithm recurses with the
group of processes that received images until only one process has an image.

A string documenting the current strategy can be retrieved with the icetGetSingleIm-
ageStrategyName function. The following sections describe the single image strategies in
more detail.

63

Figure 5.2. Tree composite network. Arrows represent the pass-
ing of data from one stage to the next. Processes receiving multiple
images composite them together.

TREE COMPOSITING

The tree composite algorithm (sometimes also called binary tree composite due to its pair-
wise grouping) is a simple algorithm that iteratively combines full images together until they are
all merged into a single image. The tree composite sub-strategy is selected by calling icetSin-
gleImageStrategy with ICET SINGLE IMAGE STRATEGY TREE. The basic network for
tree composite is shown in Figure 5.2.

The tree compositing algorithm is organized in stages. At each stage the processes pair up.
One of the processes sends its data to its pair and then drops out of the computation. The receiving
process combines the two images (using the compositing operation described in Chapter 4) and
continues to the next stage. Processing continues until there is only one image (and one process)
remaining.

As just defined, the tree composite algorithm only handles process counts that are a power of
two (that is, the number of processes is equal to 2i for some integer i). IceT handles non-powers of
two gracefully. At any stage where the number of processes is not even and one of the processes
cannot be paired, that leftover process does nothing for that stage but then continues to participate
in the next stage. An example of this can be seen in the second stage of Figure 5.2.

64

Figure 5.3. Binary-swap composite network. Arrows represent
the passing of data from one stage to the next. Processes receiv-
ing multiple images composite or stitch them together. At most
stages each process divides its image data and distributes it. The
distribution of image data can be inferred from the target images.

The advantages of tree composite are its regular and efficient data transfers. The limiting
factor of tree compositing is that at each stage of the algorithm half of the processes drop out of
the computation. Thus, for more than a few processes tree compositing provides poor process
utilization.

BINARY-SWAP COMPOSITING

The second single image compositing algorithm provided by IceT is the binary-swap al-
gorithm. The binary-swap composite sub-strategy is selected by calling icetSingleIm-
ageStrategy with ICET SINGLE IMAGE STRATEGY BINARY SWAP. The basic network
for binary-swap composite is shown in Figure 5.3

65

Like tree compositing, binary swap is organized in stages, and at each stage the processes pair
up. However, rather than have one process send all the data to the other, the image space is divided
in two and the processes swap image data so that each process has all the data for part of the
image. At the next stage, the processes pair up again, but with different partners that have the same
partition of the image. Processing continues until each of the N processes have an image 1/N
the size of the original image. At this point, all the processes send their sub-image to the display
processes where the images are stitched together.

As just defined, the binary-swap composite algorithm only handles processes that are a power
of two (that is, the number of processes is equal to 2i for some integer i). Some binary-swap
implementations handle non-powers of two by reducing the problem to the next largest power of
two and dropping the leftover processes, but IceT handles non-powers of two more gracefully than
that. Instead, IceT first finds the largest group of processes that is a power of two, makes a partition
out of them, then finds the next largest group of processes that remain that is a power of two, makes
a partition out of them, and so on. Each partition runs binary-swap independently up to the point
where each process has its own piece of data. At this point, the smaller partitions send their image
data to processes of the larger partitions, dividing up images where necessary. The largest partition
then finishes the compositing in the normal way by collecting all of the pieces.

An example of compositing with a non-power of two is given in Figure 5.3. The six processes
are partitioned first into a group of 4 and then into a group of 2. After swapping, the processes in
the smaller group send images to the larger group. In this case, the purple process sends image
data to the gray and blue processes, and the orange process sends to the red and green processes.

Like tree composite, binary swap exhibits regular and efficient data transfers. In addition, bi-
nary swap involves the use of all the processes throughout most of the compositing. Consequently,
binary swap exhibits very good process utilization and scaling with respect to the number of pro-
cesses on which it is run.

The most inefficient part of binary swap is the collection of image fragments at the end, which
is an extra step that tree composite does not need to take. Most of the time the better parallel
efficiency of binary swap over tree composite more than compensates for the extra collection step.

RADIX-K COMPOSITING

The third single image compositing algorithm provided by IceT is the radix-k algorithm.
The radix-k composite sub-strategy is selected by calling icetSingleImageStrategy with
ICET SINGLE IMAGE STRATEGY RADIXK. An example communication network for radix-k
is shown in Figure 5.4.

Radix-k compositing is similar to binary swap. Both algorithms are organized in stages. How-
ever, where in binary swap processes pair up in groups of 2, radix-k groups processes in arbitrary
(but consistent) groups of size k. Within each group, the image is split into k pieces, each piece
is assigned to a process in the group, and all image pieces are sent to the assigned process. At
the end of the stage, all processes with the same image piece are collected and recursed into. The

66

Figure 5.4. Radix-k composite network using a round of k = 3
and then a round of k = 2. Arrows represent the passing of data
from one stage to the next. Processes receiving multiple images
composite or stitch them together. The distribution of image data
can be inferred from the target images.

binary-swap algorithm is a special case of radix-k with k = 2 for every stage.

Using radix-k with k > 2 offers two advantages. First, some high speed interconnects work
more efficiently when there is more than one message being transferred over the network a time.
Second, when a process is receiving more than one image piece at a time it has the opportunity to
overlap pixel blending with the data transfer. As soon as the first image comes in it can be blended
with the local image while the subsequent images are still in transit. However, the total number
of messages created grows quadratically with k, so too large a value will make the communication
less efficient.

The k value to use for each round is automatically determined by the number of processes
participating in compositing. The k values can be indirectly controlled by setting the ICET -
MAGIC K environment variable. When set, IceT will pick k values as close as the ICET MAGIC K
value as possible. If the ICET MAGIC K value is not set, then a hard-coded target k value is used,
which can be set at compile time with the ICET MAGIC K CMake variable.

For more details on the radix-k algorithm, see the following paper.

67

Tom Peterka, David Goodell, Robert Ross, Han-Wei Shen, and Rajeev Thakur. “A
Configurable Algorithm for Parallel Image-Compositing Applications,” In Proceed-
ings of the Conference on High Performance Computing Networking, Storage and
Analysis (SC ’09), November 2009, DOI=10.1145/1654059.1654064.

AUTOMATIC ALGORITHM SELECTION

IceT also supports the automatic selection of the single image sub-strategy. This automatic
selection is enabled by calling icetSingleImageStrategy with ICET SINGLE IMAGE -
STRATEGY AUTOMATIC. (It is also the default for the single image strategy.)

The automatic selection attempts to guess at the best strategy. The intension is that IceT can
internally pick the best strategy depending on how the compositing is being used. For example,
through some empirical studies, we found that the binary tree algorithm was more efficient than
binary swap on less then 8 processes and less efficient on more than 8 processes. Consequently,
IceT automatically switches between the two algorithms based on the amount of processes involved
in the compositing.

ORDERED COMPOSITING

In some applications, the order in which images are composited together makes a difference
(see the Volume Rendering section in Chapter 4). The details on how ordered compositing is
achieved is not given here, but the basic idea for both compositing algorithms is that they first
swizzle the processes so that their order matches the order in which the images need to be compos-
ited together. When compositing images together, they make sure to maintain over/under constancy
based on the swizzled ranks from the originating processes. The networks are also managed such
that no two images are composited that are not directly “next” to each other (that is, there is no
image that needs to be inserted between them).

Reduce Strategy

An effective strategy implemented in IceT is the reduce to single tile strategy (or simply the
reduce strategy). In this strategy, the multi-tile composite problem is efficiently reduced to a set of
single image compositing problems, which are well studied and discussed in the previous section.
The reduce strategy is selected by calling icetStrategy with the ICET STRATEGY REDUCE
argument.

The reduce strategy is performed in two phases. In the first phase, processes are partitioned into
groups, each of which is responsible for compositing the image of one of the tiles. The number of
processes assigned to each tile is proportional to the number of non-empty images rendered for the

68

Single Image Composite Network Single Image Composite Network

Figure 5.5. Composite network for reduce strategy. Arrows rep-
resent the passing of data from one stage to the next. Processes
receiving multiple images composite them together. The single
image composite network is described in a preceding section.

corresponding tile. In the example shown in Figure 5.5 there are a total of 9 non-empty images.
The left tile has 3 of the 9, that is 1

3 , of the images and thus is assigned 1
3 × 6 = 2 processes.

Likewise, the right image is assigned 2
3 ×6 = 4 processes.

When assigning processes to tiles, display processes and processes rendering images to the tile
are given preference. In the example of Figure 5.5, the gray and blue processes are assigned to the
left tile. The remainder are assigned to the right tile. Any image generated by a process that does
not belong to the destination tile is transferred to a process assigned to the tile. In the example,
the three processes that render two images, gray, red, and blue, each pass one of their images to
a process in the opposing process group. All of these transfers have unique senders and receivers
and thus can happen simultaneously.

In the second phase of the reduce strategy, each group of processes independently compos-
ites its images together using one of the single image compositing algorithms described in the
preceding section.

The reduce strategy supports ordered compositing. It does this by ensuring in the first phase that
processes receive only images that are “near” the image they hold, that is, there is no other image
in between the two images in the visibility ordering. The single image compositing algorithms of
the second phase each support their own ordered compositing.

69

Figure 5.6. Compositing for split strategy. First tiles are split
and assigned to processes (upper left). Then each process simul-
taneously sends its images to the responsible process (upper right)
and receives all sub-images for its piece (bottom). The composited
pieces are then collected and stitched together.

Split Strategy

The tile split and delegate strategy (or simply the split strategy) is a simple algorithm that
splits up tiles, assigns each piece to a process, and then sends image fragments directly to the pro-
cesses for compositing. The split strategy makes efficient use of processing resources, but exhibits
haphazard and copious message passing which can cause issues on some high speed interconnects.
The split strategy is selected by calling icetStrategy with the ICET STRATEGY SPLIT ar-
gument.

The split strategy first assigns processes to tiles similar to how they are assigned in the reduce
strategy described previously. That is, the number of processes per tile is proportional to the num-
ber of non-empty images generated for it. Each tile is then split up evenly amongst all processes
assigned to it. In the example in Figure 5.6, the upper left image shows that the left image is split
between 2 processes and the right image is split amongst 4 processes.

On being assigned a section of tile, each process prepares to receive data from all the sending
processes using asynchronous receives. Each process then renders its images, splits them up, and

70

St
ag

e
1

St
ag

e
2

St
ag

e
3

St
ag

e
4

Figure 5.7. Composite network for virtual trees strategy. Arrows
represent the passing of data from one state to the next. Processes
receiving multiple images composite them together.

sends the sub-images to the corresponding process. When a process is ready and as it receives data,
the incoming images are composited together. Once all of the incoming images are composited,
the complete sub-image is sent to the display process to be stitched together.

The split strategy does not support ordered compositing. Using the split strategy in color blend-
ing mode will fail.

Virtual Trees Strategy

The virtual trees strategy is based on the binary tree compositing algorithm, but performs
multiple composites simultaneously to regain some of the load balance lost in the original algo-
rithm. The virtual trees strategy has nice regular communications, but still suffers from some load
imbalance, particularly when using fewer tiles and in later stages of the algorithm. The virtual trees
strategy is selected by calling icetStrategy with the ICET STRATEGY VTREE argument.

The virtual trees strategy works by creating a “virtual” tree for each tile. Contained in each tree
are processes that have rendered an image for that display tile. The algorithm proceeds much like
the binary tree composition algorithm except that the processes float amongst the trees, helping

71

Single Image Composite Network Single Image Composite Network

Figure 5.8. Composite network for sequential compositing. One
at a time, each tile is composited using a parallel single image
composite network described in a previous section.

with the compositing as they become available. Figure 5.7 shows an example of the virtual trees
compositing. In particular, notice that the gray process takes part in the left tree in stage 1, then
floats to take part in the right tree in stage 2, and then returns to take part in the left tree in stage 3.

When necessary, the process must keep track of multiple images belonging to different virtual
trees. Two conserve memory, images are not rendered until they are needed. Also, a process can
only hold two images at a time: one that it is sending and one that it is receiving. If a process is
holding an image for one tile, it cannot receive an image for another tile until it sends away the
image it is holding.

The virtual trees strategy does not support ordered compositing. Using the virtual trees strategy
in color blending mode will fail.

Sequential Strategy

The sequential strategy sequentially addresses the tiles, but performs parallel compositing
for each tile. The sequential strategy is selected by calling icetStrategy with the ICET -
STRATEGY SEQUENTIAL argument.

The sequential strategy iterates over all of the tiles. For each tile, it composites all the images

72

Figure 5.9. Composite network for direct send compositing. Ar-
rows represent the passing of data from one process to another.
Receiving process composite all incoming images together.

for that tile using one of the single image compositing algorithms described in that preceding
section. As demonstrated in the example in Figure 5.8, images from all processes are composited
for each tile regardless of whether some of them may be empty.

Since the single image compositing algorithms support ordered compositing, the sequential
strategy also supports ordered compositing.

The sequential strategy is most useful in the special (but common) case of rendering to a single
tile. In this case the sequential strategy can skip much of the global collective communication
necessary for other strategies that must manage the sparse collection of tiles.

Direct Send Strategy

The direct send strategy is the simplest of all the strategies. Each process simply renders
its images and sends them directly to the display process where the images get composited, as
shown in Figure 5.9. The direct send strategy is selected by calling icetStrategy with the
ICET STRATEGY DIRECT argument.

The direct send strategy is usually a poor performer. It was designed as a low watermark to
compare to other compositing strategies. The direct send strategy does, however, support ordered
compositing.

73

74

Chapter 6

Implementing New Strategies

The IceT API was written while its strategies were being developed. As such, the design
yields for the relatively simplistic addition of both new multi-tile strategies and new single-image
strategies. This chapter will provide the basic overview of how to add a new strategy for those
interested in adding new compositing algorithms to IceT. It is probably easiest to start by modifying
your IceT source to insert your own strategy in the src/strategies directory of the IceT source
distribution.

A strategy in IceT is created by simply defining a function that performs the operation. A
multi-tile strategy (one selected with icetStrategy) should take no arguments and return an
IceTImage. Thus, a new multi-tile strategy function would look something like this. (The
following sections will provide details on performing the individual tasks of the implementation.)

IceTImage icetCustomMultiTileCompose(void)
{

/* Render images. */
/* Transfer data. */
/* Composite pixels. */
/* Store results in image. */
return image;

}

To expose the strategy from the IceT interface, add an identifier to IceT.h starting with
ICET STRATEGY to the list of existing strategy identifiers. Then modify the functions in
src/strategies/select.c to expose this new identifier to the rest of the IceT library. In partic-
ular, add your new identifier to the switch statements in the following functions.

icetStrategyValid Simply add your identifier to the list so that IceT can verify that your
strategy is defined.

icetStrategyNameFromEnum Add a short human-readable name for your strategy. This is
the string returned from icetGetStrategyName.

icetStrategySupportsOrder Return ICET TRUE if your strategy can properly compos-
ite based on the ordering given in ICET COMPOSITE ORDER. Return ICET FALSE oth-
erwise. This value gets stored in the ICET STRATEGY SUPPORTS ORDERING.

75

icetInvokeStrategy Call the function that invokes your strategy’s image compositing
(icetCustomMultiTileCompose in the example above).

The process for creating a single-image strategy (one selected with icetSingleImageS-
trategy is similar. The first step is define a function that performs the compositing. However,
the single-image composite function takes arguments that define the image to composite and the
group of processes contributing. A new single-image strategy function would look something like
this.

void icetCustomSingleImageCompose(const IceTInt *compose_group,
IceTInt group_size,
IceTInt image_dest,
IceTSparseImage input_image,
IceTSparseImage *result_image,
IceTSizeType *piece_offset)

{
/* Transfer data. */
/* Composite pixels. */
/* Point result_image to image object with results. */
/* Store offset of local piece in piece_offset. */

}

The first argument, compose group, is an array of process ranks. The pixels are to be
composited in the order specified in this array. The second argument, group size, specifies
how many processes are contributing to the image and also specifies the length of compose -
group.

The third argument, image dest, specifies the process in which the final composed image
should be placed. It is an index into compose group, not the actual rank of the process. im-
age dest is really just a hint and can be ignored. The single image composite does not need to
collect the composited pixels to a single process. It can (and usually does) return with pieces of the
composited image distributed amongst nodes in the group. Any distribution is supported so long
as the pieces are continuous, non-overlapping, and collectively define all the pixels in the image.

The fourth argument, input image, contains the input image to be composited with the
corresponding images in the other processes. The resulting image is returned via the final two
arguments. result image gets the sparse image object containing the composited image piece
of the local process. It can have zero pixels if the local process has no image data. piece offset
gets the offset, in pixels, of the local image piece in the entire image.

To expose the single-image strategy from the IceT interface, add an identifier to IceT.h starting
with ICET SINGLE IMAGE STRATEGY to the list of existing single-image strategy identifiers. Then
modify the functions in src/strategies/select.c to expose this new identifier to the rest of
the IceT library. In particular, add your new identifier to the switch statements in the following
functions.

76

icetSingleImageStrategyValid Simply add your identifier to the list so that IceT can
verify that your strategy is defined.

icetSingleImageStrategyNameFromEnum Add a short human-readable name for your
strategy. This is the string returned from icetGetSingleImageStrategyName.

icetInvokeSingleImageStrategy Call the function that invokes your strategy’s image
compositing (icetCustomSingleImageCompose in the example above).

Internal State Variables for Compositing

The strategy compose functions are expected to get many of its parameters and other relevant
information from the IceT state. Many of the relevant state variables are described in the docu-
mentation for the icetGet functions (as well as elsewhere throughout this document). There are
also several “hidden” state variables for internal use. The ones specifically useful for within a com-
posite function are listed here (along with the variable type, number of entries, and a description).
Note that these state variables generally should be read from, not written to.

ICET ALL CONTAINED TILES MASKS (boolean, ICET NUM TILES × ICET NUM PRO-
CESSES) Contains an appended list of ICET CONTAINED TILES MASK variables
for all processes. Given process p and tile t, the entry at (ICET NUM TILES× p)+ t
contains the flag describing whether process p renders a non-blank image for tile t.
This variable is the same on all processes. This state variable is not set when using the
sequential strategy.

ICET CONTAINED TILES LIST (integer, ICET NUM CONTAINED TILES) All the tiles into
which the local geometry projects. In other words, this is the list of tiles which will not
be empty after local rendering. The local processor should generate images for these
tiles and participate in the composition of them.

ICET CONTAINED TILES MASK (boolean, ICET NUM TILES) This is a list of boolean flags,
one per tile. The flag is true if the local geometry projects onto the tile (that is, the
local render will not be empty for that tile) and false otherwise. This gives the same
information as ICET CONTAINED TILES LIST, but in a different way that can be
more convenient in some circumstances.

ICET CONTAINED VIEWPORT (integer, 4) Describes the region of the viewport that the ge-
ometry being rendered locally projects onto. The bounds of the data (given by
icetBoundingBox or icetBoundingVertices) projected onto the tiled dis-
play determines the region of the tiled display the data covers. The values in the four-
tuple correspond to x, y, width, and height, respectively, of the projection in global pixel
coordinates. This variable in conjunction with the ICET NEAR DEPTH and ICET -
FAR DEPTH give the full 3D projection of the local data in window space.

77

ICET FAR DEPTH (double, 1) The maximum depth value of the local geometry after projection.
See ICET CONTAINED VIEWPORT for more details.

ICET IS DRAWING FRAME (boolean, 1) Set to true while in a call to icetDrawFrame or
icetGLDrawFrame and set to false otherwise. This should always be set to true
while the compose function is being executed.

ICET MODELVIEW MATRIX (double, 16) The current modelview matrix as passed to
icetDrawFrame or read from OpenGL at the invocation of icetGLDrawFrame.

ICET NEAR DEPTH (double, 1) The minimum depth value of the local geometry after projection.
See ICET CONTAINED VIEWPORT for more details.

ICET NEED BACKGROUND CORRECTION (boolean, 1) If the resulting composited image needs
to have its background corrected. That is, the final image should be blended with
the color specified in ICET TRUE BACKGROUND COLOR or ICET TRUE BACK-
GROUND COLOR.

ICET NUM CONTAINED TILES (integer, 1) The number of tiles into which the local geometry
projects. This is the length of the ICET CONTAINED TILES LIST variable.

ICET PROJECTION MATRIX (double, 16) The current projection matrix as passed to
icetDrawFrame or read from OpenGL at the invocation of icetGLDrawFrame.

ICET TILE CONTRIB COUNTS (integer, ICET NUM TILES) For each tile, provides the num-
ber of processes that will produce a non-empty image for that tile. This state variable
is not set when using the sequential strategy.

ICET TOTAL IMAGE COUNT (integer, 1) The total number of non-empty images produced by
all processes for all tiles. This variable is the sum of all entries in ICET TILE -
CONTRIB COUNTS. This state variable is not set when using the sequential strategy.

ICET TRUE BACKGROUND COLOR (float, 4) An RGBA color identifying the “true” or final
background color. If ICET NEED BACKGROUND CORRECTION is true, then this
color should be blended as the background to all pixels in the final image.

ICET TRUE BACKGROUND COLOR WORD (integer, 1) Same as ICET TRUE BACKGROUND -
COLOR but stored as 8-bit values packed in an integer.

In addition to several internal state variables, IceT also has several internal functions for access-
ing them. The most important set for implementing a strategy is the icetUnsafeStateGet
suite of functions, which are defined in the IceTDevState.h header file.

78

const IceTDouble * icetUnsafeStateGetDouble (IceTEnum pname);
const IceTFloat * icetUnsafeStateGetFloat (IceTEnum pname);
const IceTInt * icetUnsafeStateGetInteger (IceTEnum pname);
const IceTBoolean * icetUnsafeStateGetBoolean (IceTEnum pname);
const IceTVoid ** icetUnsafeStateGetPointer (IceTEnum pname);

The implementation for the icetGet functions is to copy the data into a memory buffer
you provide, performing type conversion as necessary. The icetUnsafeStateGet functions
simply return the internal pointer where the data is stored. This can be faster and more convenient
(since you do not have to allocate your own memory), but is unsafe in two ways. First, if the
state variable is changed, the pointer you receive can become invalid. Second, no type conversion
is performed. You have to make sure that you request a pointer of the correct type (or you will
get an error). Since the state setting functions are hidden from the end user API, it is possible to
manage these erroneous conditions. These functions return const pointers to discourage you from
changing state values by directly manipulating the data in the pointers.

Memory Management

Compositing algorithms by their nature require buffers of memory of non-trivial size to hold
images, among other data, that are not needed in between calls to the compositing. One approach
is to simply use the standard C malloc and free functions. However, some implementations of
malloc/free are not always efficient, and even the best implementations can have a tendency to
fragment memory over time as large buffers are allocated and released.

During typical IceT operation, a strategy (whether it be a multi-tile strategy or a single-image
strategy) is invoked multiple times. Each invocation will require multiple buffers to manipulate
images and other data. One way to do this is to allocate these buffers as needed and free them by
the end of the invocation. However, this can lead to the inefficiencies and memory fragmentation
previously mentioned. It is also problematic when returning an image buffer as the responsibility
for deallocating the buffer becomes undefined.

A better approach is to allocate the buffers as needed and then keep the buffers around for
the next invocation of the strategy. This approach requires a certain amount of overhead to check
when buffers need to be allocated or resized and when they can be freed. IceT uses its own state
mechanism to assist in managing memory buffers. You do this by creating a state buffer, a buffer
attached to a state variable. This is done with the icetGetStateBuffer function, which is
defined in IceTDevState.h.

IceTVoid *icetGetStateBuffer(IceTEnum pname,
IceTSizeType num bytes);

The icetGetStateBuffer takes a state variable and a buffer size in bytes. It then checks
to see if a buffer of the appropriate size has already been allocated to that state variable. If so, it is
returned. If not, a new buffer is allocated and returned. There are also similar functions called

79

icetGetStateBufferImage and icetGetStateBufferSparseImage, described in
the following section, that allocate image buffers.

Because each buffer is assigned to a state variable, it is important to assign the buffer to a state
variable that is both valid and unused by other IceT components. To this end, there are several state
variables reserved for multi-tile strategies or single-image strategies. The state variables for multi-
tile strategies are named ICET STRATEGY BUFFER i numbered from 0 to 15. That is, ICET -
STRATEGY BUFFER 0, ICET STRATEGY BUFFER 1, and so on up to ICET STRATEGY -
BUFFER 15.

By convention, your multi-tile strategy implementation should start by creating #define enu-
merations that alias these variables to logical names for the buffers. This will help prevent con-
fusion or accidental sharing of buffers. Also by convention, try to make the largest buffers “first”
(that is, ICET STRATEGY BUFFER 0 has the largest buffer, ICET STRATEGY BUFFER 1 has
the next largest, and so on) so that if the strategy is changed, the large buffers will most likely be
shared.

As an example, consider the following code taken from the virtual trees strategy implementa-
tion that aliases the buffer state variables it uses.

#define VTREE_IMAGE_BUFFER ICET_STRATEGY_BUFFER_0
#define VTREE_IN_SPARSE_IMAGE_BUFFER ICET_STRATEGY_BUFFER_1
#define VTREE_OUT_SPARSE_IMAGE_BUFFER ICET_STRATEGY_BUFFER_2
#define VTREE_INFO_BUFFER ICET_STRATEGY_BUFFER_3
#define VTREE_ALL_CONTAINED_TMASKS_BUFFER ICET_STRATEGY_BUFFER_4

And here is an example of these buffers being allocated.

sparseImageSize = icetSparseImageBufferSize(max_width, max_height);

image = icetGetStateBufferImage(VTREE_IMAGE_BUFFER,
max_width, max_height);

inSparseImageBuffer = icetGetStateBuffer(VTREE_IN_SPARSE_IMAGE_BUFFER,
sparseImageSize);

outSparseImage = icetGetStateBufferSparseImage(
VTREE_OUT_SPARSE_IMAGE_BUFFER,
max_width, max_height);

info = icetGetStateBuffer(VTREE_INFO_BUFFER,
sizeof(struct node_info)*num_proc);

all_contained_tmasks = icetGetStateBuffer(VTREE_ALL_CONTAINED_TMASKS_BUFFER,
sizeof(IceTBoolean)*num_proc*num_tiles);

Once allocated, these buffers can be used and never need to be freed. IceT will handle the mem-
ory management. However, do not expect any of these buffers to contain the same data or even

80

exist on the next invocation of the strategy. Each invocation of the strategy should call icetGet-
StateBuffer, icetGetStateBufferImage, and icetGetStateBufferSparseIm-
age to ensure that it has a valid buffer.

There is a separate set of state variables reserved for buffers used in single-image strategies.
These are named ICET SI STRATEGY BUFFER i numbered from 0 to 15. That is, ICET SI -
STRATEGY BUFFER 0, ICET SI STRATEGY BUFFER 1, and so on up to ICET SI STRAT-
EGY BUFFER 15. It is important not to use the multi-tile strategy buffer variables in a single-
image strategy because the multi-tile strategy will call the single-image strategy while it is still
operating and the single-image strategy can invalidate the buffers of the multi-tile strategy.

Image Manipulation Functions

IceT defines two image types: IceTImage and IceTSparseImage. Both image types can
hold color data or depth data or both. The IceTImage type stores pixels as raw data, simple 2D
arrays holding color or pixel data in horizontal-major order. The IceTSparseImage stores im-
ages using active-pixel encoding, the run length encoding described in the Active-Pixel Encoding
section of Chapter 4.

Both the IceTImage type and the IceTSparseImage type are opaque to compositing
algorithms. IceT provides functions for creating and manipulating images. Some of these functions
are defined in IceT.h and exposed to user code. These exposed functions are documented in the
Image Objects section of Chapter 3 starting on page 43. Other functions are protected from the
user level code and reserved for use by the compositing algorithms and other parts of IceT. These
functions are defined in IceTDevImage.h and are documented here. When creating a compositing
strategy, be sure to include both of these header files.

CREATING IMAGES

The easiest and safest way to create an image is to use the icetGetStateBufferImage
function (or icetGetStateBufferSparseImage for sparse images).

IceTImage icetGetStateBufferImage(IceTEnum pname,
IceTSizeType width,
IceTSizeType height);

IceTSparseImage icetGetStateBufferSparseImage(
IceTEnum pname,
IceTSizeType width,
IceTSizeType height);

Each of these functions allocates a state buffer (described in the previous section on Mem-
ory Management) for an image of size width by height on the given state variable (pname),

81

and returns an initialized image object. The image object is allocated and initialized for the color
and depth formats specified by the ICET COLOR FORMAT and ICET DEPTH FORMAT state vari-
ables. Here is some code taken from the virtual trees strategy implementation that demonstrates
the use of these functions.

image = icetGetStateBufferImage(VTREE_IMAGE_BUFFER,
max_width, max_height);

outSparseImage = icetGetStateBufferSparseImage(
VTREE_OUT_SPARSE_IMAGE_BUFFER,
max_width, max_height);

After an image is allocated, it is possible to resize the image, but only to dimensions that are
less than or equal to those for which the image was created. This is done with the icetImage-
SetDimensions or icetSparseImageSetDimensions function.

void icetImageSetDimensions(IceTImage image,
IceTSizeType width,
IceTSizeType height);

void icetSparseImageSetDimensions(IceTSparseImage image,
IceTSizeType width,
IceTSizeType height);

These functions do not resize the internal buffer of the image. Rather, they set the internal
width and height parameters of the image and reuse the original (and potentially larger than nec-
essary) buffer. This is why they cannot be used to size the image larger than the original buffer
allocation. It is for this reason that it is typical for a multi-tile strategy to create images of size
ICET TILE MAX WIDTH and ICET TILE MAX HEIGHT. A well designed compositing algo-
rithm should never need more space than that. Likewise, it is typical for a single-image strategy to
create images of the same size as the input image.

It is sometimes necessary to know the size of buffer required to store image data. This most
often occurs when allocating buffers to receive images (as described in detail in the following
section on Transferring Images starting on page 98). Getting the necessary buffer size is done with
the icetImageBufferSize and icetSparseImageBufferSize functions.

IceTSizeType icetImageBufferSize(IceTSizeType width,
IceTSizeType height);

IceTSizeType icetSparseImageBufferSize(IceTSizeType width,
IceTSizeType height);

Each of these functions returns the maximum number of bytes required to store the image of the
given dimensions and the formats specified by the ICET COLOR FORMAT and ICET DEPTH -
FORMAT state variables.

82

It is also possible, although discouraged, to convert a previously allocated buffer into an image
object with one of the following functions.

IceTImage icetImageAssignBuffer(IceTVoid * buffer,
IceTSizeType width,
IceTSizeType height);

IceTSparseImage icetSparseImageAssignBuffer(
IceTVoid * buffer,
IceTSizeType width,
IceTSizeType height);

In each case it is assumed that the buffer is at least as large as that indicated by the icetIm-
ageBufferSize or icetSparseImageBufferSize function.

IceT also defines a special null image that can be used as a place holder when no image data
is available. Null images for both regular and sparse images are available. They are retreived with
the following functions.

IceTImage icetImageNull(void);

IceTSparseImage icetSparseImageNull(void);

QUERYING IMAGES

IceT contains several functions that allow you to query basic information about an image object
such as dimensions and data formats. Each function takes an information object and returns the
appropriate size or identifier. (More detail for the functions that work on IceTImage objects is
given in the Image Objects section of Chapter 3 starting on page 43.)

IceTSizeType icetImageGetWidth (const IceTImage image);
IceTSizeType icetImageGetHeight (const IceTImage image);
IceTSizeType icetImageGetNumPixels (const IceTImage image);

IceTEnum icetImageGetColorFormat (const IceTImage image);
IceTEnum icetImageGetDepthFormat (const IceTImage image);

IceTSizeType icetSparseImageGetWidth(
const IceTSparseImage image);

IceTSizeType icetSparseImageGetHeight(
const IceTSparseImage image);

IceTSizeType icetSparseImageGetNumPixels(
const IceTSparseImage image);

83

IceTEnum icetSparseImageGetColorFormat(
const IceTSparseImage image);

IceTEnum icetSparseImageGetDepthFormat(
const IceTSparseImage image);

IceT also provides several functions for retrieving data from IceTImage objects. These func-
tions are described in the Image Objects section of Chapter 3 starting on page 43. There is no
mechanism for directly accessing the data in an IceTSparseImage. Instead, data is indirectly
manipulated via compression and compositing functions, which are described in the subsequent
sections.

As implied in the previous section on creating images, an IceTImage or IceTSparseIm-
age object has a pointer to a buffer containing the actual image data. It is sometimes helpful to
determine if two images have the same buffer.

IceTBoolean icetImageEqual(const IceTImage image1,
const IceTImage image1);

IceTBoolean icetSparseImageEqual(const IceTSparseImage image1,
const IceTSparseImage image1);

Both icetImageEqual and icetSparseImageEqual take two image objects and re-
turns whether these two images point to the same buffer. If two images are equal, then changing
the pixel data of one image also changes the data of the other. Two images may have the same data
but still be considered different if they have separate buffers.

There are also special functions for testing whether an image is the null image.

IceTBoolean icetImageIsNull(IceTImage image);

IceTBoolean icetSparseImageIsNull(IceTSparseImage image);

SETTING PIXEL DATA

There are several mechanisms for setting, changing, or copying pixel data in IceTImage
objects. Foremost are the icetImageGetColor and icetImageGetDepth functions that
return the data buffer containing the color or depth values.

IceTUByte * icetImageGetColorub (IceTImage image);
IceTUInt * icetImageGetColorui (IceTImage image);
IceTFloat * icetImageGetColorf (IceTImage image);

IceTFloat * icetImageGetDepthf (IceTImage image);

The pointers returned from these functions are shared with the IceTImage object itself, so
writing data into the buffer will change the image object as well.

84

There are no equivalent mechanisms for changing pixel data in IceTSparseImage objects.
Instead, data is indirectly manipulated via compression, copy, and compositing functions, which
are described in the subsequent sections.

It is fairly common to need to clear an image. This is common in a multi-tile strategy when
returning an image for which no geometry is rendered. IceT provides convenience functions for
setting all the data in an image to the background color.

void icetClearImage(IceTImage image);

void icetClearSparseImage(IceTSparseImage image);

COPYING FULL PIXEL DATA

It is common to need to copy pixel data from one image to another. IceT provides multiple
helper functions to copy data amongst images. The first function is icetImageCopyPixels,
which copies a contiguous section of pixels.

void icetImageCopyPixels(const IceTImage in image,
IceTSizeType in offset,
IceTImage out image,
IceTSizeType out offset,
IceTSizeType num pixels);

icetImageCopyPixels copies pixel data from in image to out image. in image
and out image must have the same format. Both color and depth values are copied when avail-
able. The data is taken from the input starting at index in offset and are placed in the output
starting at index out offset. num pixels are copied in all. The following example code
copies the entire contents from in image to out image (assuming they have the same sizes and
formats).

icetImageCopyPixels(in_image, 0, out_image, 0, icetImageGetNumPixels(in_image));

This example copies the third row of data from the input image to the fifth row of data in the
output image.

width = icetImageGetWidth(in_image);
icetImageCopyPixels(in_image, 3*width, out_image, 5*width, width);

This example copies the second half of pixels in in image and places it in the first part of out -
image. Notice that coping a contiguous region of pixels makes it easy to divide images in halves
(or thirds, or whatevers), which is a common operation in image compositing, without having to
worry about image dimensions.

85

num_pixels = icetImageGetNumPixels(in_image);
icetImageCopyPixels(in_image, num_pixels/2, out_image, 0, num_pixels/2);

A second convenience function for copying data amongst arrays is icetImageCopyRe-
gion. This function works much like icetImageCopyPixels, except that you specify a
rectangular 2D viewport window to copy rather than a 1D array region of pixels.

void icetImageCopyRegion(const IceTImage in image,
const IceTInt * in viewport,
IceTImage out image,
const IceTInt * out viewport);

in viewport is an array containing 4 values that specify the rectangular region from which
to copy. The first 2 values specify the x and y position of the lower left corner of the region. The
second 2 values specify the width and height of the region. out viewport is a similar array that
specifies the destination region. The width and height of in viewport and out viewport
must be the same. Here is a simple example of copying all the pixels from in image to out -
image.

IceTInt full_viewport[4];

full_viewport[0] = 0;
full_viewport[1] = 0;
full_viewport[2] = icetImageGetWidth(in_image);
full_viewport[3] = icetImageGetHeight(out_image);

icetImageCopyRegion(in_image, full_viewport, out_image, full_viewport);

This example copies a 50× 50 region of pixels from the lower left corner of in image to the
upper right corner of out image.

IceTInt in_viewport[4], out_viewport[3];

in_viewport[0] = 0; in_viewport[1] = 0;
in_viewport[2] = 50; in_viewport[3] = 50;

out_viewport[0] = icetImageGetWidth(in_image) - 50;
out_viewport[1] = icetImageGetHeight(in_image) - 50;
out_viewport[2] = 50;
out_viewport[3] = 50;

icetImageCopyRegion(in_image, in_viewport, out_image, out_viewport);

As mentioned previously, there is a icetClearImage function to clear the contents of an
image to background. There is also another function called icetImageClearAroundRegion
that sets the image to background everywhere but in a specified 2D viewport window.

86

void icetImageClearAroundRegion(IceTImage image,
const IceTInt * region);

Expanding on the previous example, here is code that copies a region of pixels and then clears
everything outside of this region in the destination.

icetImageCopyRegion(in_image, in_viewport, out_image, out_viewport);
icetImageClearAroundRegion(out_image, out_viewport);

COPY SPARSE IMAGE DATA

IceT also conatins several functions for efficiently copying pixels in sparse images. Because of
the differences in implementation and use, the copy functions differ significantly between the full
image and sparse image copy functions.

Basic Sparse Image Copy

void icetSparseImageCopyPixels(const IceTSparseImage in image,
IceTSizeType in offset,
IceTSizeType num pixels,
IceTSparseImage out image);

icetSparseImageCopyPixels copies a region of continuous pixels from in image to
out image. The region starts a pixel offset in offset and contains num pixels. out -
image is resized to contain only the copied pixels. The new size will have a width of num -
pixels and a height of 1.

Sparse Image Split

Parallel compositing algorithms often involve splitting an image into a number of (approx-
imately) equal sized pieces and distributing them amongst processes. This can be achieved by
iteratively calling icetSparseImageCopyPixels. However, each call to icetSparseIm-
ageCopyPixels has to search through the pixels in in image to the appropriate in offset.
It is a bit more efficient (and convenient) to iterate over the image once and copy to multiple
different output images as you go. The icetSparseImageSplit function does just that.

87

void icetSparseImageSplit(
const IceTSparseImage in image,
IceTSizeType in image offset,
IceTInt num partitions,
IceTInt eventual num partitions,
IceTSparseImage * out images,
IceTSizeType * offsets);

icetSparseImageSplit takes in image, partitions it into num partitions, and
stores the results in the array of pre-allocated images out images. As an optimization, the image
in the first index of out images may be the same as in image. In this case the first partition
will be copied “in place.” It is an error to have in image in any other index of out images.
The offset of each image with respect to the original image is stored in the corresponding index of
the array offsets.

The in image offset and eventual num partitions are for recursive splits, de-
scribed in the following section. For a single invocation of icetSparseImageSplit for an
image, in image offset and eventual num partitions should be set to 0 and the same
value as num partitions, respectively.

Before calling icetSparseImageSplit, it is important to allocate images with enough
pixel space. To allocate these images, you first need to know how big each partition will be.
icetSparseImageSplitPartitionNumPixels returns the maximum size of each parti-
tion in pixels. Do not assume that a partition size will be the total number of pixels divided by the
number of partitions. This assumption is wrong when the number of pixels in the original image
does not divide by the number of partitions.

void icetSparseImageSplitPartitionNumPixels(
IceTSizeType input num pixels,
IceTInt num partitions,
IceTInt eventual num partitions);

Because the number of partitions may be large or unknown at compile time, it can be problem-
atic to fill the array of output images to icetSparseImageSplit with images created with
icetGetStateBufferSparseImage due to the limited number of available state variables.
In this case, it is prudent to create a large enough buffer with icetGetStateBuffer and break
it up into pieces to make sparse image objects with icetSparseImageAssignBuffer. The
following code gives an example of using icetSparseImageSplit. This example uses copy-
in-place for the first partition, but a trivial change makes a copy to this buffer.

#define NUM_SPLITS 8

/* original_image is image to be split. */

original_num_pixels = icetSparseImageGetNumPixels(original_pixels);
partition_num_pixels

88

= icetSparseImageSplitPartitionNumPixels(original_num_pixels,
NUM_SPLITS,
NUM_SPLITS);

partition_buffer_size = icetSparseImageBufferSize(partition_num_pixels, 1);

split_image_buffer = icetGetStateBuffer(MYCOMPOSITE_SPLIT_IMAGE_BUFFER,
(NUM_SPLITS-1)*partition_buffer_size);

out_images[0] = original_image;
for (i = 1; i < NUM_SPLITS; i++) {

out_images[i] = icetSparseImageAssignBuffer(split_image_buffer,
partition_num_pixels, 1);

split_image_buffer += partition_buffer_size;
}

icetSparseImageSplit(original_image,
0,
NUM_SPLITS,
NUM_SPLITS,
out_images,
offsets);

for (i = 0; i < NUM_SPLITS; i++) {
DoSomething(out_images[i], offsets[i]);

}

Recursive Sparse Image Split

Some image compositing algorithms, such as binary swap and radix-k, recursively split their
images in subsequent rounds. It is also sometimes the case, such as when telescoping, that different
processes will split images with different factors. For example, one process might split its image
into eight pieces with three recursive calls of two partitions while another process creates the same
partition with one split of two partitions and another split of four partitions while yet another makes
one split of eight partitions.

Regardless of how the image is split, it is often necessary for the final partitions to match
exactly with respect to offset and size. Unfortunately, if the size of the original image is not evenly
divisible by the eventual number of partitions, different recursive partitions could lead to different
image pieces.

To get around this problem, icetSparseImageSplit has the in image offset and
eventual num partitions arguments. The in image offset declares that the in im-
age came from a previous call to icetSparseImageSplit with the given offset. The even-
tual num partitions argument declares the total number of partitions that will be made
with this call to icetSparseImageSplit and all subsequent calls to icetSparseImage-

89

Split. Obviously, num partitions must be a factor of eventual num partitions, or
otherwise eventual num partitions could never be created. As long as the recursive calls
to icetSparseImageSplit are consistent with the in image offset and eventual -
num partitions arguments, the partitions will match up exactly.

The following code example will result in the exact same image partitions as those in the
previous example, but does it with two recursive calls.

#define FIRST_NUM_SPLITS 2
#define SECOND_NUM_SPLITS 4
#define TOTAL_NUM_SPLITS (FIRST_NUM_SPLITS * SECOND_NUM_SPLITS)

/* original_image is image to be split. */

/* Perform first level image split. */
original_num_pixels = icetSparseImageGetNumPixels(original_pixels);
partition_num_pixels

= icetSparseImageSplitPartitionNumPixels(original_num_pixels,
FIRST_NUM_SPLITS,
TOTAL_NUM_SPLITS);

partition_buffer_size = icetSparseImageBufferSize(partition_num_pixels, 1);

split_image_buffer = icetGetStateBuffer(
MYCOMPOSITE_FIRST_SPLIT_IMAGE_BUFFER,
(FIRST_NUM_SPLITS-1)*partition_buffer_size);

intermediate_images[0] = original_image;
for (i = 1; i < FIRST_NUM_SPLITS; i++) {

intermediate_images[i] = icetSparseImageAssignBuffer(split_image_buffer,
partition_num_pixels,
1);

split_image_buffer += partition_buffer_size;
}

icetSparseImageSplit(original_image,
0,
FIRST_NUM_SPLITS,
TOTAL_NUM_SPLITS,
intermediate_images,
interpediate_offsets);

/* Perform second level image split. */
for (j = 0; j < FIRST_NUM_SPLITS; j++) {

intermediate_num_pixels = icetSparseImageGetNumPixels(original_pixels);

partition_num_pixels = icetSparseImageSplitPartitionNumPixels(
original_num_pixels,

90

SECOND_NUM_SPLITS,
TOTAL_NUM_SPLITS/FIRST_NUM_SPLITS);

partition_buffer_size = icetSparseImageBufferSize(partition_num_pixels, 1);

split_image_buffer = icetGetStateBuffer(
MYCOMPOSITE_FIRST_SPLIT_IMAGE_BUFFER,
(SECOND_NUM_SPLITS-1)*partition_buffer_size);

out_images[0] = original_image;
for (i = 1; i < SECOND_NUM_SPLITS; i++) {

out_images[i] = icetSparseImageAssignBuffer(split_image_buffer,
partition_num_pixels, 1);

split_image_buffer += partition_buffer_size;
}

icetSparseImageSplit(intermediate_images[j],
intermediate_offsets[j],
FIRST_NUM_SPLITS,
TOTAL_NUM_SPLITS/FIRST_NUM_SPLITS,
out_images,
out_offsets);

for (i = 0; i < SECOND_NUM_SPLITS; i++) {
DoSomething(out_images[i], out_offsets[i]);

}
}

This example is artificial in that the recursive splits are unlikely to be done on all partitions.
Typical operation is to split an image and then send all images but one to other processes. Gener-
ally, images of the kept partition are also collected from other processes and blended. The recursive
split then happens only on that one partition kept.

Interlacing Images

Strategies that use icetSparseImageSplit should consider honoring the ICET INTER-
LACE IMAGES option. Image interlacing is described in Chapter 4 starting on page 55. IceT pro-
vides a pair of functions, icetSparseImageInterlace and icetGetInterlaceOff-
set, to simplify this.

void icetSparseImageInterlace(
const IceTSparseImage in image,
IceTInt eventual num partitions,
IceTEnum scratch state buffer,
IceTSparseImage out image);

91

icetSparseImageInterlace copies all the pixels from in image to out image, but
shuffling the pixels around. The pixel shuffling is done in such a way that if you subsequently split
the image with one or more calls to icetSparseImageSplit to create eventual num -
partitions (using the appropriate recursive calling described previously as necessary), then all
the resulting image partitions will contain a continuous array of pixels. icetSparseImageIn-
terlace requires a temporary buffer during its operation. It thus requires an identifier to a state
variable for a buffer not being used.

Once an interlaced image is completely split, no further pixel shuffling is necessary. How-
ever, because the partitions have been shuffled, the offsets that are reported by icetSparseIm-
ageInterlace are incorrect. The correct offset is retrieved with icetGetInterlaceOff-
set

IceTSizeType icetGetInterlaceOffset(
IceTInt partition index,
IceTInt eventual num partitions,
IceTSizeType original image size);

icetGetInterlaceOffset gets information about the original image and a particular
partition and returns the actual offset of that partition. partition index is the index of the
partition (the same as those used by a call to icetSparseImageSplit that was called non-
recursively). eventual num partitions is the same as that in the call to icetSparseIm-
ageInterlace and the first call to icetSparseImageSplit. original image size
is the number of pixels in the starting image before it was split.

The following code is boilerplate for implementing image interlacing in a single image strategy.

#define MY_COMPOSE_INTERLACE_IMAGE ICET_SI_STRATEGY_BUFFER_0
#define MY_COMPOSE_DUMMY_ARRAY ICET_SI_STRATEGY_BUFFER_1
/*...*/

void icetMySingleImageCompose(IceTInt *compose_group,
IceTInt group_size,
IceTInt image_dest,
IceTSparseImage input_image,
IceTSparseImage *result_image,
IceTSizeType *piece_offset)

{
IceTSizeType original_image_size;
IceTInt eventual_num_partitions;
IceTBoolean use_interlace;
IceTSparseImage working_image;
IceTSparseImage final_image;
IceTInt my_piece_index;
IceTInt my_piece_offset;

original_image_size = icetSparseImageGetNumPixels(input_image);

92

eventual_num_partitions = /* Num total partitions to be created. */;

use_interlace = icetIsEnabled(ICET_INTERLACE_IMAGES);
use_interlace &= (eventual_num_partitions > 2);
if (use_interlace) {

working_image = icetGetStateBufferSparseImage(
MY_COMPOSE_INTERLACE_IMAGE,
icetSparseImageGetWidth(input_image),
icetSparseImageGetHeight(input_image));

icetSparseImageInterlace(input_image,
eventual_num_partitions,
MY_COMPOSE_DUMMY_ARRAY,
working_image);

} else {
working_image = input_image;

}

/* Do image compositing. Set final_image to my piece to be returned.
Set my_piece_index to the index of the partition in final_image.
Set my_piece_offset to the appropriate offest returned from
icetSparseImageSplit. */

*result_image = final_image;
if (use_interlace) {

*piece_offset = icetGetInterlaceOffset(my_piece_index,
eventual_num_partitions,
original_image_size);

} else {
*piece_offset = my_piece_offset;

}
}

COMPRESSING IMAGES

icetCompressImage converts a full IceTImage into to more compact IceTSpar-
seImage.

void icetCompressImage(const IceTImage image,
IceTSparseImage compressed image);

Sometimes it is convenient to break up an image into pieces, and compress each piece. This is
common when dividing up an image to be divvied amongst some amount of processes. This can
be most easily achieved by using the icetCompressSubImage.

93

void icetCompressSubImage(const IceTImage image,
IceTSizeType offset,
IceTSizeType pixels,
IceTSparseImage compressed image);

icetCompressSubImage compresses a region of contiguous pixels. The block of pixels
starts offset pixels past the beginning of the image and is pixels long. icetCompres-
sImage is almost equivalent to calling icetCompressSubImage with offset set to 0 and
pixels set to the result of icetImageGetNumPixels. When compressing an image with
icetCompressSubImage, the output IceTSparseImage has its width set to the pixels
argument and its height set to 1.

A sparse image can be returned to its uncompressed form with icetDecompressImage or
icetDecompressSubImage.

void icetDecompressImage(
const IceTSparseImage compressed image,
IceTImage image);

void icetDecompressSubImage(
const IceTSparseImage compressed image,
IceTSizeType offset,
IceTImage image);

RENDERING IMAGES

A multi-tile compositing strategy is responsible for rendering images on demand as well as
compositing. To render and retrieve the image for a particular tile in the display, use either
icetGetTileImage or icetGetCompressedTileImage.

void icetGetTileImage(IceTInt tile,
IceTImage image);

void icetGetCompressedTileImage(IceTInt tile,
IceTSparseImage image);

Both functions will invoke a rendering for that tile (performing the appropriate projection trans-
formations) as necessary, read back the frame buffers and store the results in an image buffer you
specify. The difference, of course, is that icetGetTileImage fills the buffer with raw data
whereas icetGetCompressedTileImage will compress the image data with active-pixel
encoding.

Although it is roughly equivalent to calling icetGetTileImage and then icetCompres-
sImage, icetGetCompressedTileImage can be much more efficient.

94

IMAGE COMPOSITING

The IceT library contains multiple functions to locally composite two images together. These
functions handle the complexities of dealing with different image formats and compositing opera-
tions.

void icetComposite(IceTImage destBuffer,
const IceTImage srcBuffer,
int srcOnTop);

icetComposite takes the images stored in destBuffer and srcBuffer, composites
them together, and stores the result in destBuffer. The compositing operation is determined
by the ICET COMPOSITE MODE state variable. (See the discussion on Compositing Operations
in Chapter 4 for information on how the compositing operation is determined.) If the compositing
operation is order dependent, then the Boolean argument srcOnTop determines whether sr-
cBuffer or destBuffer is on top.

If one of your images is compressed (stored in an IceTSparseImage, it is faster to perform
the compositing operation on the compressed image rather than decompressing first. In fact, it is
faster to composite a compressed image than two full images because the active-pixel encoding
allows the composite algorithm to skip over groups of background pixels. This gives you the
double win of faster image transfer and faster compositing.

void icetCompressedComposite(
IceTImage destBuffer,
const IceTSparseImage srcBuffer,
int srcOnTop);

icetCompressedComposite behaves just like icetComposite except that sr-
cBuffer is a compressed image rather than a full image. The images in destBuffer and
srcBuffer are composited together, and the results are stored in destBuffer.

Many parallel compositing algorithms break images into pieces, distribute amongst processes,
and composite the pieces. To facilitate the compositing image pieces, IceT provides icetCom-
pressedSubComposite.

void icetCompressedSubComposite(
IceTImage destBuffer,
IceTSizeType offset,
const IceTSparseImage srcBuffer,
int srcOnTop);

The destBuffer, srcBuffer and srcOnTop arguments are the same as those in
icetCompressedComposite. The offset argument and the number of pixels in sr-
cBuffer specify a region of contiguous pixels in destBuffer to perform the compositing
in.

95

Because single image strategies accept a sparse image as its input and return a sparse image as
its output, their most common compositing operation is to composite two sparse images together.
Compositing together two sparse images allows the composition to skip over inactive pixels in both
images. However, because the compositing cannot be done in place, the results must be written to
a third sparse image, which results in extra memory allocation and copying.

void icetCompressedCompressedComposite(
const IceTSparseImage front buffer,
const IceTSparseImage back buffer,
IceTSparseImage dest buffer);

icetCompressedCompressedComposite takes two images, composites them, and
places the results in dest buffer. Unlike the previously mentioned forms of compositing, the
blending order is not determined by a flag. Rather, the first image argument, front buffer, is
the image always considered closer to the viewer.

Communications

IceT provides an abstract communication layer, which is described in detail in Chapter 7. A
handle to a communicator is stored in the current context. To make using the communicator eas-
ier, a set of convenience functions described next is available in the IceTDevCommunication.h
include file. All of these functions are based off of those found in the MPI standard. For documen-
tation, see that for the corresponding MPI function. Data types, however, are specified as one of the
following IceT data types: ICET BOOLEAN, ICET BYTE, ICET SHORT, ICET INT, ICET -
SIZE TYPE, ICET FLOAT, or ICET DOUBLE. There is also an ICET IN PLACE COLLECT
identifier that takes the place of MPI IN PLACE for the gather functions (icetCommGather,
icetCommGatherv, and icetCommAllgather).

Note that each function is missing an argument specifying the communicator. These functions
just grab the current context’s communicator. Also unlike MPI, these functions do not return error
codes. It is assumed that errors are fatal. Some functions, like icetCommSize, icetComm-
Rank, and icetCommWaitany use the function return value instead of passing a value back in
a pointer argument.

struct IceTCommunicatorStruct *icetCommDuplicate(void);

void icetCommBarrier(void);

void icetCommSend(const void * buf,
int count,
IceTEnum datatype,
int dest,
int tag);

96

void icetCommRecv(void * buf,
int count,
IceTEnum datatype,
int src,
int tag);

void icetCommSendrecv(const void * sendbuf,
int sendcount,
IceTEnum sendtype,
int dest,
int sendtag,
void * recvbuf,
int recvcount,
IceTEnum recvtype,
int src,
int recvtag);

void icetCommGather(const void * sendbuf,
int sendcount,
IceTEnum datatype,
void * recvbuf,
int root);

void icetCommGatherv(const void * sendbuf,
int sendcount,
IceTEnum datatype,
void * recvbuf,
const IceTSizeType * recvcounts,
const IceTSizeType * recvoffsets,
int root);

void icetCommAllgather(const void * sendbuf,
int sendcount,
IceTEnum type,
void * recvbuf);

void icetCommAlltoall(const void * sendbuf,
int sendcount,
IceTEnum type,
void * recvbuf);

IceTCommRequest icetCommIsend(const void * buf,
int count,
IceTEnum datatype,
int dest,
int tag);

97

IceTCommRequest icetCommIrecv(void * buf,
int count,
IceTEnum datatype,
int src,
int tag);

void icetCommWait(IceTCommRequest * request);

void icetCommWaitany(
int count,
IceTCommRequest * array of requests);

int icetCommSize(void);

int icetCommRank(void);

In addition to these MPI-like functions, IceTDevCommunication.h provides a couple of
helper functions for finding ranks in process groups. A group in IceT is simply represented by
an integer array that maps (via the index) the rank in the group to the rank of the same process
in the current context’s communicator. An example of such a group is passed to the single image
strategy compose function as demonstrated at the beginning of this chapter.

int icetFindRankInGroup(const int * group,
IceTSizeType group size,
int rank to find);

int icetFindMyRankInGroup(const int * group,
IceTSizeType group size);

These functions provide the reverse mapping of a rank from the context’s communicator to a
rank in the group. The first form, icetFindRankInGroup, takes a group (and its group -
size) and a rank and returns the index in group that contains rank. If rank is not in group,
-1 is returned. icetFindMyRankInGroup is similar except that it returns the index for the local
rank. Calling icetFindMyRankInGroup is equivalent to calling icetFindRankInGroup
with rank set to the value in the state variable ICET RANK.

TRANSFERRING IMAGES

Although the IceTImage and IceTSparseImage types are opaque, IceT provides a mech-
anism to transfer the data. A pair of functions allow you to package the data into a buffer (provided
for you) and then unpackage a buffer back into an image object. The first of these functions is ice-
tImagePackageForSend for IceTImage or icetSparseImagePackageForSend for
IceTSparseImage.

98

void icetImagePackageForSend(IceTImage image,
IceTVoid ** buffer,
IceTSizeType * size);

void icetSparseImagePackageForSend(IceTSparseImage image,
IceTVoid ** buffer,
IceTSizeType * size);

Both of these functions behave identically. They return a pointer in buffer to a block of raw
data that can be sent opaquely via the communications functions. The length of this buffer in bytes
is returned in size. When sending this data, send it as ICET BYTE type data of size length. In
the following example, an image is compressed and then its data is sent to another process.

IceTSparseImage src_sparse_image;
IceTVoid *package_buffer;
IceTSizeType package_size;

src_sparse_image = icetGetStateBufferSparseImage(MYCOMPOSITE_SRC_SPARSE_IMAGE,
max_width, max_height);

icetSparseImagePackageForSend(src_sparse_image, &package_buffer, &package_size);
icetCommSend(package_buffer, package_size, ICET_BYTE, dest_rank,

MYCOMPOSITE_FOO_TAG);

The companion to each package function is the unpackage function. These are icetImage-
UnpackageFromReceive for IceTImage and icetSparseImageUnpackageFrom-
Receive for IceTSparseImage.

IceTImage icetImageUnpackageFromReceive(IceTVoid * buffer);

IceTSparseImage icetSparseImageUnpackageFromReceive(
IceTVoid * buffer);

These functions take a buffer containing the same data provided by a package command, create
an image object, and return that object. Note that the buffer provided becomes part of the image.
If that buffer is destroyed the image reverts to an undefined state.

This leads to a minor complication when receiving images. The receiver must allocate a raw
buffer of the appropriate size and then leave it available while the image is still in use. This is best
done by creating a state buffer (described in the Memory Management section starting on page 79).
The size necessary for these buffers is determined with the buffer size functions, repeated here for
reference.

IceTSizeType icetImageBufferSize(IceTSizeType width,
IceTSizeType height);

IceTSizeType icetSparseImageBufferSize(IceTSizeType width,
IceTSizeType height);

99

As a companion to the previous example, here a sparse image is received from another process
and then composited into a locally held image.

IceTSparseImage dest_sparse_image;
IceTVoid *package_buffer;
IceTSizeType max_package_size;

max_package_size = icetSparseImageBufferSize(max_width, max_height);
package_buffer = icetGetStateBuffer(MYCOMPOSITE_DEST_SPARSE_IMAGE,

max_package_size);
icetCommRecv(package_buffer, max_package_size, ICET_BYTE, src_rank,

MYCOMPOSITE_FOO_TAG);
dest_sparse_image = icetSparseImageUnpackageFromReceive(package_buffer);
icetCompressedComposite(image, dest_sparse_image, ICET_FALSE);

HELPER COMMUNICATION FUNCTIONS

common.h (found in the strategies directory) contains some helper functions that implement
common communication patterns. They may be helpful in implementing your strategy.

void icetRenderTransferFullImages(
IceTImage image,
IceTVoid * inSparseImageBuffer,
IceTSparseImage outSparseImage,
IceTInt * tile image dest);

icetRenderTransferFullImages renders all the tiles that are specified in the ICET -
CONTAINED TILES LIST state array and sends them to the processors with ranks specified in
tile image dest. This function is guaranteed not to deadlock so long as all processes call it.
The function uses only memory given with the buffer arguments, and will make its best efforts to
get the graphics and network hardware to run in parallel.

image is an image object big enough to hold color and/or depth values that is ICET TILE -
MAX WIDTH × ICET TILE MAX HEIGHT big. outSparseImage is likewise a sparse image
that big. inSparseImageBuffer is a buffer big enough to hold sparse color and depth infor-
mation for an image that is ICET TILE MAX WIDTH× ICET TILE MAX HEIGHT big. The size
for inSparseImageBuffer can be determined with the icetSparseImageBufferSize
function in IceTDevImage.h. tile image dest is an array where if tile t is in ICET CON-
TAINED TILES LIST, then the rendered image for tile t is sent to tile image dest[t].

common.h also contains a similar function that does the same thing except that images are read
back and returned as sparse images.

100

void icetRenderTransferSparseImages(
IceTSparseImage compositeImage1,
IceTSparseImage compositeImage2,
IceTVoid * inSparseImageBuffer,
IceTSparseImage outSparseImage,
IceTInt * tile image dest,
IceTSparseImage * resultImage);

compositeImage1, compositeImage2, and outSparseImage are sparse image ob-
jects big enough to hold color and/or depth values that is ICET TILE MAX WIDTH × ICET -
TILE MAX HEIGHT big. inImageBuffer is a buffer big enough to hold sparse color and
depth information for an image that is ICET TILE MAX WIDTH × ICET TILE MAX HEIGHT
as determined by icetSparseImageBufferSize. tile image dest is an array where
if tile t is in ICET CONTAINED TILES LIST, then the rendered image for tile t is sent to
tile image dest[t]. resultImage will be set to the image with the final results. It will
point to either compositeImage1 or compositeImage2 depending on which buffer the result hap-
pened to end in.

There is also a more general form for transferring images or other large data blocks.

typedef IceTVoid *(*IceTGenerateData)(IceTInt id,
IceTInt dest,
IceTSizeType * size);

typedef void (*IceTHandleData)(void * buffer,
IceTInt src);

void icetSendRecvLargeMessages(
IceTInt numMessagesSending,
const IceTInt * messageDestinations,
IceTBoolean messagesInOrder,
IceTGenerateData generateDataFunc,
IceTHandleData handleDataFunc,
IceTVoid * incomingBuffer,
IceTSizeType bufferSize);

icetSendRecvLargeMessages is similar to icetRenderTransferFullImages
except that it works with generic data, data generators, and data handlers. It takes a count of a
number of messages to be sent and an array of ranks to send to. Two callbacks are required. One
generates the data (so large data may be generated JIT to save memory) and the other handles
incoming data. The generate callback is run right before the data it returns is sent to a particular
destination. This callback will not be called again until the memory it returned is no longer in use,
so the memory may be reused. As large messages come in, the handle callback is called. As an
optimization, if a process sends to itself, then that will be the first message created. This gives the
callback an opportunity to build its local data while waiting for incoming data.

101

numMessagesSending is a count of the number of large messages this processor is send-
ing out. messageDestinations is an array of size numMessagesSending that contains
the ranks of message destinations. generateDataFunc is a callback function that generates
messages. The function is given the index in messageDestinations and the rank of the des-
tination as arguments. The data of the message and the size of the message (in bytes) are returned.
The generateDataFunc will not be called again until the returned data is no longer in use.
Thus the data may be reused. handleDataFunc is a callback function that processes messages.
The function is given the data buffer and the rank of the process that sent it. The callback should
completely finish its use of the buffer before returning. incomingBuffer is a buffer to use for
incoming messages. bufferSize is the maximum size of a message.

Invoking Single-Image Compositing

Some of the existing IceT strategies internally use a more traditional single-image strategy to
perform some of their work. Your multi-tile strategy might also benefit from leveraging these
algorithms. To perform the composite of a single image amongst a group of processes, use the
icetSingleImageCompose function defined in common.h in the strategies directory of IceT
source code.

void icetSingleImageCompose(const IceTInt * compose group,
IceTInt group size,
IceTInt image dest,
IceTSparseImage input image,
IceTSparseImage * result image,
IceTSizeType * piece offset);

icetSingleImageCompose performs an image composition using the single-image strat-
egy set by icetSingleImageStrategy. Rather than perform the composition on all the
processes in the communicator, it performs them on a subset with arbitrary ordering. (Note that
ordering matters when doing alpha blending as opposed to the z-buffer operation.) compose -
group is the mapping of processes from the communicator ranks to the “group” ranks. The size
of the groups (and the length of the compose group array) is specified by group size.

The image dest argument provides a hint to the single image compositing algorithm where
you plan to collect the resulting image data (usually with the icetSingleImageCollect
function described next). The composed image evenutally will end up in the processor with rank
compose group[image dest]. The compositing algorithm may use this hint to favor moving
pixels to the indicated process.

input image should contain the partial input image to be composited. (Of course, each
process should have its own partial image. All processes should provide images of identical di-
mensions.) The contents of this buffer may be changed. result image will be set to point to
a composited image. In general, this is a partial image, so its size will likely be smaller than the
original input image. The location of the resulting piece is returned in piece offset.

102

icetSingleImageCompose will generally return with the composited image partitioned
amongst the processes in the group. If the ICET COLLECT IMAGES is on, then these peices must
be collected to the display process. This is most easily done with the icetSingleImageCol-
lect function.

void icetSingleImageCollect(
const IceTSparseImage input image,
IceTInt dest,
IceTSizeType * piece offset,
IceTSparseImage * result image);

icetSingleImageCollect collects image partitions distributed amongst processes. It
is particularly useful after a call to icetSingleImageCompose. Unlike icetSingleIm-
ageCompose, however, this function must be called on all processes, not just those in a group.
Processes that have no piece of the image should pass 0 for piece offset and a null or other
zero-size image for input image.

The argument input image contains the composited image partition returned from icetS-
ingleImageCompose. dest is the rank of the process to where the image should be collected.
Be aware that this is generally a different value than the image dest parameter of icetSin-
gleImageCompose. piece offset is the offset to the start of the valid pixels. This is the
same value as that returned from icetSingleImageCompose. result image is an allo-
cated image in which to place the uncompressed results of the collection.

If the ICET COLLECT IMAGES option is off, then the image collection, which can be one
of the most time consuming parts of image compositing, can be skipped. If the image collection
is skipped, then each process should set the values of ICET VALID PIXELS TILE, ICET -
VALID PIXELS OFFSET, and ICET VALID PIXELS NUM to the tile, offset, and size, respec-
tively, of the image piece returned by the local process. Setting these variables is unnecessary when
images are collected to the display processes. It is valid to collect images even when ICET COL-
LECT IMAGES is off, but an error to not collect the images when this option is on.

The following is a very simple example of compositing the image on tile 0 and providing the
result on the process displaying that tile. If ordered compositing is enabled, then the order is
respected. This is similar to the sequential strategy except that only the first tile is composited.

#define COMPOSE_TILE_0_INPUT_IMAGE_BUFFER ICET_STRATEGY_BUFFER_0
#define COMPOSE_TILE_0_OUTPUT_IMAGE_BUFFER ICET_STRATEGY_BUFFER_1
#define COMPOSE_TILE_0_COMPOSE_GROUP ICET_STRATEGY_BUFFER_2

IceTImage ComposeTile0(void)
{
IceTInt max_width;
IceTInt max_height;
IceTInt rank;
IceTInt num_proc;
const IceTInt *display_nodes;

103

IceTInt image_dest;
IceTBoolean ordered_composite;
IceTSparseImage input_image;
IceTSparseImage composited_image;
IceTInt piece_offset;
IceTInt *compose_group;

icetGetIntegerv(ICET_NUM_TILES, &num_tiles);
icetGetIntegerv(ICET_TILE_MAX_WIDTH, &max_width);
icetGetIntegerv(ICET_TILE_MAX_HEIGHT, &max_height);
icetGetIntegerv(ICET_RANK, &rank);
icetGetIntegerv(ICET_NUM_PROCESSES, &num_proc);
display_nodes = icetUnsafeStateGetInteger(ICET_DISPLAY_NODES);
ordered_composite = icetIsEnabled(ICET_ORDERED_COMPOSITE);

input_image = icetGetStateBufferSparseImage(COMPOSE_TILE_0_INPUT_IMAGE_BUFFER,
max_width, max_height);

output_image = icetGetStateBufferImage(COMPOSE_TILE_0_OUTPUT_IMAGE_BUFFER,
max_width, max_height);

compose_group = icetGetStateBuffer(COMPOSE_TILE_0_COMPOSE_GROUP,
sizeof(IceTInt)*num_proc);

if (ordered_composite) {
icetGetIntegerv(ICET_COMPOSITE_ORDER, compose_group);

} else {
int i;
for (i = 0; i < num_proc; i++) {

compose_group[i] = i;
}

}

/* Determine which node in compose_group is displaying tile 0. */
image_dest = icetFindRankInGroup(compose_group, num_proc, display_nodes[0]);
if (image_dest < 0) {
icetRaiseError("Could not find display node in composite order.",

ICET_SANITY_CHECK_FAIL);
}

icetGetCompressedTileImage(0, input_image);
icetSingleImageCompose(compose_group,

num_proc,
image_dest,
input_image,
&composited_image,
&piece_offset);

if (icetIsEnabled(ICET_COLLECT_IMAGES)) {

104

icetSingleImageCollect(composited_image,
display_nodes[0],
piece_offset,
output_image);

} else {
IceTSizeType piece_size = icetSparseImageGetNumPixels(composited_image);
if (piece_size > 0) {

/* If the image is not collected, then the background of the piece
should be corrected if ICET_NEED_BACKGROUND_CORRECTION is true.
The icetDecompressSubImageCorrectBackground takes care of all this
during decompression for you. See the following section on
background collection for more information. */

icetDecompressSubImageCorrectBackground(composited_image,
piece_offset,
output_image);

icetStateSetInteger(ICET_VALID_PIXELS_TILE, 0);
icetStateSetInteger(ICET_VALID_PIXELS_OFFSET, piece_offset);
icetStateSetInteger(ICET_VALID_PIXELS_NUM, piece_size);

} else {
output_image = icetImageNull();
icetStateSetInteger(ICET_VALID_PIXELS_TILE, -1);
icetStateSetInteger(ICET_VALID_PIXELS_OFFSET, 0);
icetStateSetInteger(ICET_VALID_PIXELS_NUM, 0);

}
}

return output_image;
}

Background Correction

As described in the volume/transparent rendering section of Chapter 4 (starting on page 49), it
is sometimes necessary for IceT to correct the background of composited images by blending the
final image over the background color. This responsibility falls on the compositing strategy (the
multi-tile version, not the single-tile substrategy). The rational is that most efficient compositing
strategies partition images and distribute for concurrent blending, and so the strategy can most
efficiently correct the background by blending the pieces in parallel before it is collected.

Thus, if you are writing a new strategy, you should make sure that the background is always
corrected when necessary. When your strategy function is called, the state variable ICET NEED -
BACKGROUND CORRECTION will be set to true if the background needs to be corrected (i.e.
ICET CORRECT COLORED BACKGROUND is true, icetCompositeMode is set to ICET -
COMPOSITE MODE BLEND, and the background color is not [0,0,0,0]). The actual background
color to mix is stored in ICET TRUE BACKGROUND COLOR and ICET TRUE BACKGROUND -

105

COLOR WORD. These background colors can be blended on a per-pixel bases using the ICET -
BLEND FLOAT or ICET BLEND UBYTE macros defined in IceTDevImage.h.

That said, there is generally no any cause for a strategy to directly query these state variables.
IceT provides several helper functions that automatically handle the background correction for
you.

First, if your strategy is using the icetSingleImageCollect function, described in the
previous section on invoking a single-image strategy, this function will automatically correct the
background for you. No further works needs to be done.

IceTDevImage.h also provides several functions specifically to correct background data.
First are icetDecompressImageCorrectBackground and icetDecompressSubIm-
ageCorrectBackground. These are analagous to the icetDecompressImage and
icetDecompressSubImage functions except that they perform background correction if nec-
essary. Since strategies often read images as compressed images and must decompress them before
returning, this is often the most convienient way to correct the background. An example of using
one is given in the previous section on invoking a single-image strategy for the case when image
collection is not necessary.

void icetDecompressImageCorrectBackground(
const IceTSparseImage compressed image,
IceTImage image);

void icetDecompressSubImageCorrectBackground(
const IceTSparseImage compressed image,
IceTSizeType offset,
IceTImage image);

If your strategy has already decompressed its image, it can correct the background by simply
passing it to the icetImageCorrectBackground function. If no background correction is
necessary, the function does nothing.

void icetImageCorrectBackground(IceTImage image);

Some compositing strategies will do no work for tiles with no geometry projected into them.
In this case, the strategy must still return an image filled with the background color. The best way
to create such an image is to use icetClearImageTrueBackground.

void icetClearImageTrueBackground(IceTImage image);

Matrix Operations

IceT uses 4× 4 homogeneous transformation matrices to represent projections from object
space to world and clipping space. These matrices are stored in IceTDouble arrays with 16 values

106

and have a layout conforming with matrices in OpenGL. To simplify the common operations on
these matrices, IceT consolidates several useful matrix functions identified by the prototypes in
IceTDevMatrix.h.

First is macro named ICET MATRIX. This macro takes a pointer to a matrix array and row
and column indices and resolves to the appropriate value in the matrix. The ICET MATRIX macro
ensures that row-column indices are properly converted to array indices. The following example
use prints the values of a matrix.

IceTDouble matrix[16];
IceTInt row;
IceTInt column;

/* Do stuff that fills matrix. */

for (row = 0; row < 4; row++) {
for (column = 0; column < 4; column++) {
printf("%8.2lf", ICET_MATRIX(matrix, row, column);

}
printf("\n");

}

IceTDevMatrix.h contains a couple of matrix multiply functions. The first form, takes two
matrices and stores the result into a third. The following computes A × B and stores the result in
C.

void icetMatrixMultiply(IceTDouble * C,
const IceTDouble * A,
const IceTDouble * B);

The second form as performs A × B, but stores the result back into matrix A rather than in a
third matrix. This operation is similar to the glMultMatrix function.

void icetMatrixPostMultiply(IceTDouble * A,
const IceTDouble * B);

The icetMatrixVectorMultiply function multiplies 4 × 4 matrix A with four-
component column vector v and stores the result in array out (which of course must be allocated
to hold 4 values).

void icetMatrixVectorMultiply(IceTDouble * out,
const IceTDouble * A,
const IceTDouble * v);

IceTDevMatrix.h also contains two functions for performing the dot product of vectors. One
performs the dot product for 3-component vectors, the other for 4-component vectors.

107

IceTDouble icetDot3(const IceTDouble * v1,
const IceTDouble * v2);

IceTDouble icetDot4(const IceTDouble * v1,
const IceTDouble * v2);

The icetMatrixCopy function provides a simple way to copy the data from one matrix
array to another.

void icetMatrixCopy(IceTDouble * matrix dest,
const IceTDouble * matrix src);

IceTDevMatrix.h contains functions to quickly build standard transformation matrices: iden-
tity, scale, translate, rotate, orthographic projection, and frustum projection. These functions have
the same calling specifications as the OpenGL counterparts, glLoadIdentity, glScale,
glTranslate, glRotate, glOrtho, and glFrustum, respectively, except that they all have
a mat out argument to store the resulting matrix.

void icetMatrixIdentity(IceTDouble * mat out);

void icetMatrixScale(IceTDouble x,
IceTDouble y,
IceTDouble z,
IceTDouble * mat out);

void icetMatrixTranslate(IceTDouble x,
IceTDouble y,
IceTDouble z,
IceTDouble * mat out);

void icetMatrixRotate(IceTDouble angle,
IceTDouble x,
IceTDouble y,
IceTDouble z,
IceTDouble * mat out);

void icetMatrixOrtho(IceTDouble left,
IceTDouble right,
IceTDouble bottom,
IceTDouble top,
IceTDouble znear,
IceTDouble zfar,
IceTDouble * mat out);

108

void icetMatrixFrustum(IceTDouble left,
IceTDouble right,
IceTDouble bottom,
IceTDouble top,
IceTDouble znear,
IceTDouble zfar,
IceTDouble * mat out);

In addition, IceTDevMatrix.h also provides other forms for the scale, translate, and rotate
functions that apply (i.e. multiply) the transformation to an existing matrix. Again, the transfor-
mation is post multiplied in the same manner as OpenGL.

void icetMatrixMultiplyScale(IceTDouble * mat out,
IceTDouble x,
IceTDouble y,
IceTDouble z);

void icetMatrixMultiplyTranslate(IceTDouble * mat out,
IceTDouble x,
IceTDouble y,
IceTDouble z);

void icetMatrixMultiplyRotate(IceTDouble * mat out,
IceTDouble angle,
IceTDouble x,
IceTDouble y,
IceTDouble z);

Finally, IceTDevMatrix.h provides functions for computing the inverse, transpose, and in-
verse transpose of a matrix. The functions that perform an inverse return an IceTBoolean that is
ICET TRUE if the operation was successful or ICET FALSE if the input matrix has no inverse.

IceTBoolean icetMatrixInverse(const IceTDouble * matrix in,
IceTDouble * matrix out);

void icetMatrixTranspose(const IceTDouble * matrix in,
IceTDouble * matrix out);

IceTBoolean icetMatrixInverseTranspose(
const IceTDouble * matrix in,
IceTDouble * matrix out);

109

Raising Diagnostics

IceT’s diagnostics system, described in Chapter 3 starting on page 30, alerts the user of anoma-
lous conditions. Your compositing strategies should also alert the user through this diagnostic
mechanism.

Error and warning diagnostics can be raised with the icetRaiseError and icetRaise-
Warning functions, respectively. These functions are defined in the IceTDevDiagnostics.h
header file.

void icetRaiseError(const char * message,
IceTEnum type);

void icetRaiseWarning(const char * message,
IceTEnum type);

The message argument contains a descriptive string that will be presented to the user describ-
ing the error or warning condition. The type argument gives the class of the error or warning. It
must be one of the following with the given meanings.

ICET INVALID VALUE An inappropriate value has been passed to a function.

ICET INVALID OPERATION An inappropriate function has been called.

ICET OUT OF MEMORY IceT has ran out of memory for buffer space.

ICET BAD CAST A function has been passed a value of the wrong type.

ICET INVALID ENUM A function has been passed an invalid constant.

ICET SANITY CHECK FAIL An internal error (or warning) has occurred.

Your strategy also has the option of raising debug statements. Unlike an error or warning, debug
statements are often raised during normal operation. These messages are not intended for the end
user. Rather, they are status messages that might help you track problems while debugging. The
debug messages are only created when IceT is compiled in “Debug” mode (the CMAKE BUILD -
TYPE CMake variable is set to Debug when building IceT) and the ICET DIAG DEBUG flag is
given to icetDiagnostics. With these two conditions met, basic debug status messages can
be raised with the icetRaiseDebug function.

void icetRaiseDebug(const char * message);

Unlike icetRaiseError and icetRaiseWarning, icetRaiseDebug does not ac-
cept a type because no anomalous condition is being reported.

It is common to want to use debug messages to report the state of variables. To help you
with this, IceT provides three convenience functions that accept a printf-formatted message and a
number of arguments. The message and arguments are passed to the C sprintf function.

110

void icetRaiseDebug1(const char * message,
arg1);

void icetRaiseDebug2(const char * message,
arg1,
arg2);

void icetRaiseDebug4(const char * message,
arg1,
arg2,
arg3,
arg4);

In the documentation for these functions here, the type for argi is left out. The type of these
arguments is determined by the printf-formatted message. (As you have probably guessed, these
functions are actually macros that pass the arguments to sprintf.)

111

112

Chapter 7

Communicators

IceT implements an abstract communication layer. As we will see later in this chapter, this
communication layer is a message passing interface based heavily on MPI.1 As an end user to
IceT, you need to know almost nothing about this communication layer. You need only to get a
reference to an IceTCommunicator object. This object is opaque. You only need to get one,
pass it to icetCreateContext, and then delete it. icetCreateContext will duplicate the
communicator, so you need not worry about when you delete the context you created.

Most of the time you will use the built-in MPI implementation of the communicator, which
is discussed in the first section. If necessary, you can write your own communicator, which is
discussed in the following section.

MPI Communicators

Using the MPI implementation of a communicator, you simply include IceTMPI.h in your
source and link IceTMPI into your own library or executable. The only function you need to use
is icetCreateMPICommunicator.

IceTCommunicator icetCreateMPICommunicator(
MPI Comm mpi comm);

Quite simply, icetCreateMPICommunicator converts an MPI Comm, an MPI commu-
nicator, into an IceTCommunicator, an IceT communicator. icetCreateMPICommuni-
cator duplicates the MPI communicator. Thus, you can delete the mpi comm communicator as
soon as icetCreateMPICommunicator exits. Furthermore, the returned IceTCommuni-
cator will internally manage the MPI communicator it created.

Once created, the IceTCommunicator may be deleted with icetDestroyMPICommu-
nicator.

void icetDestroyMPICommunicator(IceTCommunicator comm);

1In fact, the original implementation of IceT used MPI directly. The abstract layer was inserted later as a more-or-
less cut-and-paste operation.

113

icetDestroyMPICommunicator will release all the resources used by comm. This in-
cludes the internal MPI communicator, which you do not have direct access to. comm will be
invalid once you call icetDestroyMPICommunicator. However, you do not have to worry
about any IceT context you have passed it to since they will have duplicated the communicator.

Using the MPI communicator is easy. First, you include the IceTMPI.h header.

#include <IceT.h>
#include <IceTMPI.h>

When you are ready to create an IceT context (usually during the initialization of your pro-
gram), create the MPI-based communicator, use it to initialize the context, and then destroy the
communicator.

icetComm = icetCreateMPICommunicator(MPI_COMM_WORLD);
icetContext = icetCreateContext(icetComm);
icetDestroyMPICommunicator(icetComm);

Once you have a context, you can use IceT as explained throughout this document. When you
are ready, destroy the context as you normally would.

icetDestroyContext(icetContext);

Finally, do not forget to use the IceTMPI library when linking your executable or library.

A more detailed example of using the MPI communicator is in the Chapter 2 tutorial.

User Defined Communicators

Occasionally, it may be necessary to provide your own version of a parallel communicator. This
may be because you are using a communication library other than MPI. It may also be because you
wish to augment the behavior of MPI when it is used by IceT. To provide your own communicator,
you need only to create an IceTCommunicator object. In previous sections we have discussed
IceTCommunicator as an opaque type, and unless you are implementing your own you should
treat it as such. If you are implementing an IceTCommunicator, you will see that it is simply
a pointer to a structure containing references to several communication functions.

typedef struct IceTCommRequestStruct {
IceTEnum magic_number;
IceTVoid *internals;

114

} *IceTCommRequest;
#define ICET_COMM_REQUEST_NULL ((IceTCommRequest)NULL)

struct IceTCommunicatorStruct {
struct IceTCommunicatorStruct *

(*Duplicate)(struct IceTCommunicatorStruct *self);
void (*Destroy)(struct IceTCommunicatorStruct *self);
void (*Barrier)(struct IceTCommunicatorStruct *self);
void (*Send)(struct IceTCommunicatorStruct *self,

const void *buf,
int count,
IceTEnum datatype,
int dest,
int tag);

void (*Recv)(struct IceTCommunicatorStruct *self,
void *buf,
int count,
IceTEnum datatype,
int src,
int tag);

void (*Sendrecv)(struct IceTCommunicatorStruct *self,
const void *sendbuf,
int sendcount,
IceTEnum sendtype,
int dest,
int sendtag,
void *recvbuf,
int recvcount,
IceTEnum recvtype,
int src,
int recvtag);

void (*Gather)(struct IceTCommunicatorStruct *self,
const void *sendbuf,
int sendcount,
IceTEnum datatype,
void *recvbuf,
int root);

void (*Gatherv)(struct IceTCommunicatorStruct *self,
const void *sendbuf,
int sendcount,
IceTEnum datatype,
void *recvbuf,
const int *recvcounts,
const int *recvoffsets,
int root);

void (*Allgather)(struct IceTCommunicatorStruct *self,

115

const void *sendbuf,
int sendcount,
IceTEnum datatype,
void *recvbuf);

void (*Alltoall)(struct IceTCommunicatorStruct *self,
const void *sendbuf,
int sendcount,
IceTEnum datatype,
void *recvbuf);

IceTCommRequest (*Isend)(struct IceTCommunicatorStruct *self,
const void *buf,
int count,
IceTEnum datatype,
int dest,
int tag);

IceTCommRequest (*Irecv)(struct IceTCommunicatorStruct *self,
void *buf,
int count,
IceTEnum datatype,
int src,
int tag);

void (*Wait)(struct IceTCommunicatorStruct *self, IceTCommRequest *request);
int (*Waitany)(struct IceTCommunicatorStruct *self,

int count, IceTCommRequest *array_of_requests);

int (*Comm_size)(struct IceTCommunicatorStruct *self);
int (*Comm_rank)(struct IceTCommunicatorStruct *self);
void *data;

};

typedef struct IceTCommunicatorStruct *IceTCommunicator;

To create a custom IceTCommunicator simply allocate the structure and fill in the function
pointers. An implementation for a function that creates an IceT communicator might look like the
following. In this example, the my* functions are implementations of the communication functions.

IceTCommunicator myCreateCommunicator(myCommType myComm)
{
IceTCommunicator comm = malloc(sizeof(struct IceTCommunicatorStruct));

comm->Duplicate = myDuplicate;
comm->Destroy = myDestroy;
comm->Send = mySend;
/* And so on... */

116

comm->data = malloc(sizeof(myComm))
/* Making a duplicate here would be better. */
memcpy(comm->data, myComm, sizeof(myComm));

return comm;
}

The paired destruction function should probably just call the Destroy function of the commu-
nicator (or vice versa) to ensure that destroy works either way.

void myDestroyCommunicator(IceTCommunicator comm)
{
comm->Destroy(comm);

}

static void myDestroy(IceTCommunicator self)
{
myCommType *myComm = (myCommType *)self->data;
/* Release resources of myComm. */
free(myComm);
free(self);

}

For a more concrete example of implementing an IceT communicator, see the IceT code for
the MPI communicator.

117

118

Chapter 8

Transitioning from IceT 1.0 to IceT 2

In the transition from IceT version 1 to IceT version 2, one of the major goals was to make
the core IceT library independent of OpenGL. All of IceT’s abilities to interface with OpenGL are
retained but isolated in a separate library.

This change and others necessitated changes in the IceT interface. This chapter provides simple
instructions for transitioning existing code to the new IceT interface.

Header File Changes

Because previous versions of IceT were considered an OpenGL library, public header files
were placed in a GL subdirectory. Previous code included GL/ice-t.h and often also included
GL/ice-t mpi.h.

#include <GL/ice-t.h>
#include <GL/ice-t_mpi.h>

These header files no longer exist. The header files are now no longer in the GL directory and
have changed in case and spelling to IceT.h and IceTMPI.h. There is also a new header file
called IceTGL.h that contains the specific OpenGL functionality. A straight transition to IceT 2
will require this header file as well.

#include <IceT.h>
#include <IceTGL.h>
#include <IceTMPI.h>

Basic Type Changes

IceT 1 used the basic types defined by OpenGL such as GLint and GLfloat. IceT now defines
its own basic types such as IceTInt and IceTFloat, and these new types should be used in place
of the OpenGL types with respect to data passed to and from IceT.

119

Function Name Changes

To make the OpenGL layer explicit, all functions in this layer are prefixed with icetGL. This
along with some other minor implementation details require slight changes in existing code.

First, before any other icetGL functions are called, icetGLInitialize must be called.
icetGLInitialize should be called right after the context is created:

icetCreateContext(comm);
icetGLInitialize();

Make certain to call icetGLInitialize for each context for which you use the OpenGL
layer.

Apart from adding a function call for icetGLInitialize, there are only two function
names that have changed: icetDrawFunc and icetDrawFrame have changed to icetGL-
DrawCallback and icetGLDrawFrame, respectively.

Technically, a function called icetDrawFrame still exists, but its interface has changed (so
you should get a compiler error if you try to use it) and its behavior now skips any OpenGL specific
operations (specifically reading and adjusting OpenGL state).

The function icetInputOutputBuffers has also been removed. It has been replaced
with the two functions icetSetColorFormat and icetSetDepthFormat, which basically
set the input buffers. The output buffers are implicitly set to be the same as the input buffers, but if
the ICET COMPOSITE ONE BUFFER feature is enabled, then the depth buffer will be suppressed
in the output if both the color and depth buffer are read as input. This is the only sensible case for
the input and output buffers to differ.

There is also a new function named icetCompositeMode to explicitly set the composite
operation (z-buffer or blending). Previous versions of IceT implicitly set the composite mode based
on what type of image data was available. To ensure that IceT is behaving as the user expects, this
is now set explicitly. You will get errors if you have picked a composite mode that cannot be
implemented with the image data available.

Getting Image Data

The icetGetColorBuffer and icetGetDepthBuffer functions no longer exist. The
underlying data storage for images has become more flexible, and this method of getting image
data became insufficient.

Instead, icetGLDrawFrame now returns an IceTImage object. There is a suite of new
functions available, described in Chapter 3, that allow you to get data from IceTImage objects.

120

The methods that get color and data information from image objects are icetImageGetCol-
orub and icetImageGetDepthf, respectively.

Also note that IceT now uses floating point numbers for depth values. Previous versions of IceT
used 32-bit integers. Although using these integers was fast, IceT had problems with identifying
background pixels. Different graphics hardware used different values for the maximum depths.
However, the OpenGL specification places the maximum depth value at 1.0 if using floating point
values.

Miscellaneous Changes

The serial strategy has been renamed to the sequential strategy. This better reflects the actual
operation of the strategy as image compositing is still performed in parallel. As such, the ICET -
STRATEGY SERIAL identifier has changed to ICET STRATEGY SEQUENTIAL.

Libraries

The names of the libraries have changed from icet and icet mpi to IceTCore and IceTMPI,
respectively. Additionally, there is also an IceTGL library that contains code for the OpenGL
layer. The icet strategies library no longer exists. Everything in this library has been merged into
IceTCore.

CMake Configuration

The CMake configuration for CMake has changed a bit between CMake version 1 and 2. You
no longer need a copy of FindIceT.cmake. The FIND PACKAGE(IceT) still works, but relies only
on the IceTConfig.cmake file generated by IceT.

The use file prevously defined in ICET USE FILE no longer exists. Instead, you will need to
insert your own commands to specify the IceT header and library locations.

There is a new variable called ICET GL LIBS that specifies the libraries used for the OpenGL
layer. The variables ICET CORE LIBS and ICET MPI LIBS still exist to specify the core and
MPI layer libraries, respectively.

Here is some typical CMake script fragment for using IceT.

FIND_PACKAGE(IceT REQUIRED)

121

INCLUDE_DIRECTORIES(${ICET_INCLUDE_DIRS})

ADD_EXECUTABLE(myprog ${SRCS})

TARGET_LINK_LIBRARIES(myproc
${ICET_CORE_LIBS}
${ICET_GL_LIBS}
${ICET_MPI_LIBS}
)

122

Chapter 9

Future Work

The majority of the development for IceT was finished by 2004. Since then, IceT has proven
to be a stable and versatile library that is currently being used in several production applications.
In 2011 several scalability tests were run and the compositing algorithms updated to better support
petascale computing.

The following is a list of potential changes to IceT. As of this writing, none of these are cur-
rently under development. Rather, these are identified shortcomings of various degrees in IceT.
These features will be handled on an as needed basis, assuming the need should arise.

Render aborts In interactive applications, it is often convenient to be able to abort a render that
takes some time to finish. Aborting a render in the middle of a composite is tricky, because
you need to make sure that everyone is aware of the abort and that all communication is
correctly canceled. This could be partially implemented in IceT’s communication layer, but
all the strategies still have to be ready to quit once a communication is canceled due to an
abort (or at the very least ignore it without crashing).

Multithreaded compositing IceT is specifically designed for distributed memory parallel com-
puting. It is clear that current and future high-performance computers are built with nodes
comprising many computing cores each. It may be necessary to increase the thread safety of
IceT and implement hybrid distributed-shared memory parallel compositing algorithms.

Memory conservation IceT’s compositing algorithms require multiple image buffers. To save
allocation time and prevent memory fragmenting, IceT keeps image buffers around in its own
memory pool. Memory-constrained applications may prefer that IceT releases this memory
between frames and take the performance hit. IceT’s compositing algorithms could also
stand a pass at minimizing the memory they use.

Multi-tile vs. big image compositing IceT contains several special algorithms for compositing
multi-tile images. However, these strategies have never been properly compared to the com-
positing of a single very large image. This comparison should be done, and if the single
compositing is faster then perhaps make a new strategy to combine tiles to a single large
image before compositing, then split back up at the end.

Matrix functions IceT contains several convenience functions for 4× 4 matrix transformations
(described in Chapter 6 starting on page 106). They are hidden under the assumption that

123

programs using IceT will have similar functionality from its own rendering system, but per-
haps that is not always the case. Should these functions be exposed?

124

Chapter 10

Man Pages

In this chapter you will find a man page for each of the functions available in the IceT API.

125

icetAddTile

NAME

icetAddTile – add a tile to the logical display.

SYNOPSIS

#include <IceT.h>

int icetAddTile(IceTInt x,
IceTInt y,
IceTSizeType width,
IceTSizeType height,
int display rank);

DESCRIPTION

Adds a tile to the tiled display. Every process, whether actually displaying a tile or not, must
declare the tiles in the display and which processes drive them with icetResetTiles and
icetAddTile. Thus, each process calls icetAddTile once for each tile in the display, and
all processes must declare them in the same order.

The parameters x, y, width, and height define the tile’s viewport in the logical global
display much in the same way glViewport declares a region in a physical display in OpenGL.
IceT places no limits on the extents of the logical global display. That is, there are no limits on the
values of x and y. They can extend as far as they want in both the positive and negative directions.

IceT will project its images onto the region of the logical global display that just covers all of
the tiles. Therefore, shifting all the tiles in the logical global display by the same amount will have
no real overall effect.

The display rank parameter identifies the rank of the process that will be displaying the
given tile. It is assumed that the output of the rendering window of the given process is projected
onto the space in a tiled display given by x, y, width, and height. Each tile must have a valid
rank (between 0 and ICET NUM PROCESSES− 1). Furthermore, no process may be displaying
more than one tile.

RETURN VALUE

Returns the index of the tile created or −1 if the tile could not be created.

126

icetAddTile

ERRORS

ICET INVALID VALUE Raised if display rank is not a valid process rank, if dis-
play rank is already assigned to another tile, or if width or
height is smaller than 1. If this error is raised, nothing is done
and -1 is returned.

WARNINGS

None.

BUGS

All processes must specify the same tiles in the same order. IceT will assume this even though
it is not explicitly detected or enforced.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetResetTiles, icetPhysicalRenderSize

127

icetBoundingBox

NAME

icetBoundingBoxd, icetBoundingBoxf – set bounds of geometry

SYNOPSIS

#include <IceT.h>

void icetBoundingBoxd (IceTDouble x min,
IceTDouble x max,
IceTDouble y min,
IceTDouble y max,
IceTDouble z min,
IceTDouble z max);

void icetBoundingBoxf (IceTFloat x min,
IceTFloat x max,
IceTFloat y min,
IceTFloat y max,
IceTFloat z min,
IceTFloat z max);

DESCRIPTION

Establishes the bounds of the geometry as contained in an axis-aligned box with the given
extents.

icetBoundingBoxd and icetBoundingBoxf are really just convience functions. They
create an array of the 8 corner vertices and set the bounding vertices appropriately. See
icetBoundingVertices for more information.

ERRORS

None.

WARNINGS

None.

128

icetBoundingBox

BUGS

None known.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetBoundingVertices

129

icetBoundingVertices

NAME

icetBoundingVertices – set bounds of geometry.

SYNOPSIS

#include <IceT.h>

void icetBoundingVertices(IceTInt size,
IceTEnum type,
IceTSizeType stride,
IceTSizeType count,
const IceTVoid * pointer);

DESCRIPTION

icetBoundingVertices is used to tell IceT what the bounds of the geometry drawn by the
callback registered with icetDrawCallback or icetGLDrawCallback are. The bounds
are assumed to be the convex hull of the vertices given. The user should take care to make sure
that the drawn geometry actually does fit within the convex hull, or the data may be culled in
unexpected ways. IceT runs most efficiently when the bounds given are tight (match the actual
volume of the data well) and when the number of vertices given is minimal.

The size parameter specifies the number of coordinates given for each vertex. Coordinates
are given in X-Y-Z-W order. Any Y or Z coordinate not given (because size is less than 3) is
assumed to be 0.0, and any W coordinate not given (because size is less than 4) is assumed to be
1.0.

The type parameter specifies in what data type the coordinates are given. Valid types
are ICET SHORT, ICET INT, ICET FLOAT, and ICET DOUBLE, which correspond to types
IceTShort, IceTInt, IceTFloat, and IceTDouble, respectively.

The stride parameter specifies the offset between consecutive vertices in bytes. If stride
is 0, the array is assumed to be tightly packed.

The count parameter specifies the number of vertices to set.

The pointer parameter is an array of vertices with the first vertex starting at the first byte.

If data replication is being used, each process in a data replication group should register the
same bounding vertices that encompass the entire geometry. By default there is no data replication,
so unless you call icetDataReplicationGroup, all process can have their own bounds.

130

icetBoundingVertices

ERRORS

ICET INVALID ENUM Raised if type is not one of ICET SHORT, ICET INT,
ICET FLOAT, or ICET DOUBLE.

WARNINGS

None.

BUGS

None known.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetBoundingBox, icetDataReplicationGroup, icetDrawCallback,
icetGLDrawCallback

131

icetCompositeMode

NAME

icetCompositeMode – set the type of operation used for compositing

SYNOPSIS

#include <IceT.h>

void icetCompositeMode(IceTEnum mode);

DESCRIPTION

Sets the composite mode used when combining images. IceT enables parallel rendering by
allowing each process in your code to independently render images of partial geometry. These
partial-geometry images are then “composited” to form a single image equivalent to if all the
geometry were rendered by a single process.

IceT supports multiple operations that can be used to combine images. The operator you use
should be equivalent to that used by your rendering system to resolve hidden surfaces or mix
occluding geometry with that behind it.

The argument mode is one of the following enumerations:

ICET COMPOSITE MODE Z BUFFER Use the z-buffer hidden-surface removal operation. The
compositing operation compares the distance of pixel fragments from the viewpoint
and passes the fragment closest to the user. In order for this operation to work, images
must have a depth buffer (set with icetSetDepthFormat).

ICET COMPOSITE MODE BLEND Blend two fragments together using the standard over/under
operator. in order for this operation to work, images must have a color buffer (set
with icetSetColorFormat) that has an alpha channel and there must be no depth
buffer (as the operation makes no sense with depth). Also, this mode will only work if
ICET ORDERED COMPOSITE is enabled and the order is set with icetComposi-
teOrder.

The default compositing mode is ICET COMPOSITE MODE Z BUFFER. The current com-
posite mode is stored in the ICET COMPOSITE MODE state variable.

ERRORS

ICET INVALID ENUM mode is not a valid composite mode.

132

icetCompositeMode

WARNINGS

None.

BUGS

icetCompositeMode will let you set a mode even if it is incompatible with other current
settings. Some settings will be checked during a call to icetDrawFrame. For example, if the
image format (specified with icetSetColorFormat and icetSetDepthFormat) does not
support the composite mode picked, you will get an error during the call to icetDrawFrame.

Other incompatibilities are also not checked. For example, if the composite mode is set to
ICET COMPOSITE MODE BLEND, IceT will happily use this operator even if ICET ORDERED -
COMPOSITE is not enabled. However, because order matters in the blend mode, you will probably
get incorrect images if the compositing happens in arbitrary order.

COPYRIGHT

Copyright c©2010 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetCompositeOrder, icetSetColorFormat, icetSetDepthFormat

133

icetCompositeOrder

NAME

icetCompositeOrder – specify the order in which images are composited

SYNOPSIS

#include <IceT.h>

void icetCompositeOrder(const IceTInt * process ranks);

DESCRIPTION

If ICET ORDERED COMPOSITE is enabled and the current strategy supports ordered compo-
sition (verified with the ICET STRATEGY SUPPORTS ORDERING state variable, then the order
which images are composited is specified with icetCompositeOrder. If compositing is done
with z-buffer comparisons (e.g. icetCompositeMode is called with ICET COMPOSITE -
MODE Z BUFFER), then the ordering does not matter, and ICET ORDERED COMPOSITE should
probably be disabled. However, if compositing is done with color blending (e.g. icetCompos-
iteMode is called with ICET COMPOSITE MODE BLEND), then the order in which the images
are composed can drastically change the output.

For ordered image compositing to work, the geometric objects rendered by processes must be
arranged such that if the geometry of one process is “in front” of the geometry of another process
for any camera ray, that ordering holds for all camera rays. It is the application’s responsibility to
ensure that such an ordering exists and to find that ordering. The easiest way to do this is to ensure
that the geometry of each process falls cleanly into regions of a grid, octree, k-d tree, or similar
structure.

Once the geometry order is determined for a particular rendering viewpoint, it is given to IceT
in the form of an array of ranks. The parameter process ranks should have exactly ICET -
NUM PROCESSES entries, each with a unique, valid process rank. The first process should have
the geometry that is “in front” of all others, the next directly behind that, and so on. It should be
noted that the application may actually impose only a partial order on the geometry, but that can
easily be converted to the linear ordering required by IceT.

When ordering is on, it is accepted that icetCompositeOrder will be called in between
every frame since the order of the geometry may change with the viewpoint.

If data replication is in effect (see icetDataReplicationGroup), all processes are still
expected to be listed in process ranks. Correct ordering can be achieved by ensuring that all
processes in each group are listed in contiguous entries in process ranks.

134

icetCompositeOrder

ERRORS

ICET INVALID VALUE Not every entry in the parameter process ranks was a
unique, valid process rank.

WARNINGS

None.

BUGS

If an ICET INVALID VALUE error is raised, internal arrays pertaining to the ordering of
images may not be restored properly. If such an error is raised, the function should be re-invoked
with a valid ordering before preceding. Unpredictable results may occur otherwise.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetCompositeMode icetStrategy

135

icetCopyState

NAME

icetCopyState – copy state machine of one context to another.

SYNOPSIS

#include <IceT.h>

void icetCopyState(IceTContext dest,
const IceTContext src);

DESCRIPTION

The icetCopyState function replaces the state of dest with the current state of src. This
function can be used to quickly duplicate a context.

The IceTCommunicator object associated with dest is not changed (nor can it ever
be). Consequently, the following state values are not copied either, since they refer to process
ids that are directly tied to the IceTCommunicator object: ICET RANK, ICET NUM PRO-
CESSES, ICET DATA REPLICATION GROUP, ICET DATA REPLICATION GROUP SIZE,
ICET COMPOSITE ORDER, and ICET PROCESS ORDERS. However, every other state param-
eter is copied.

ERRORS

None.

WARNINGS

None.

BUGS

The state is copied blindly. It is therefore possible to copy states that are invalid for a context’s
communicator. For example, a display rank may not refer to a valid process id.

136

icetCopyState

NOTES

Behavior is undefined if dest or src has never been created or has already been destroyed.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetCreateContext, icetGetContext, icetSetContext

137

icetCreateContext

NAME

icetCreateContext – creates a new context.

SYNOPSIS

#include <IceT.h>

IceTContext icetCreateContext(IceTCommunicator comm);

DESCRIPTION

The icetCreateContext function creates a new IceT context, makes it current, and returns
a handle to the new context. The handle returned is of type IceTContext. This is an opaque
type that should not be handled directly, but rather simply passed to other IceT functions.

Like OpenGL, the IceT engine behaves like a large state machine. The parameters for engine
operation is held in the current state. The entire state is encapsulated in a context. Each new
context contains its own state.

It is therefore possible to change the entire current state of IceT by simply switching contexts.
Switching contexts is much faster, and often more convenient, than trying to change many state
parameters.

ERRORS

None.

WARNINGS

None.

BUGS

It may be tempting to use contexts to run different IceT operations on separate program threads.
Although certainly possible, great care must be taken. First of all, all threads will share the same
context. Second of all, IceT is not thread safe. Therefore, a multi-threaded program would have
to run all IceT commands in ‘critical sections’ to ensure that the correct context is being used, and
the methods execute safely in general.

138

icetCreateContext

NOTES

icetCreateContext duplicates the communicator comm. Thus, to avoid deadlocks on
certain implementations (such as MPI), the user level program should call icetCreateCon-
text on all processes with the same comm object at about the same time.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetDestroyContext, icetGetContext, icetSetContext, icetCopyState,
icetGet

139

icetCreateMPICommunicator

NAME

icetCreateMPICommunicator – Converts an MPI communicator to an IceT communi-
cator.

SYNOPSIS

#include <IceTMPI.h>

IceTCommunicator icetCreateMPICommunicator(
MPI Comm mpi comm);

DESCRIPTION

IceT requires a communicator in order to perform correctly. An application is free to build its
own communicator, but many will simply prefer to use MPI, which is a well established parallel
communication tool. Thus, IceT comes with an implementation of IceTCommunicator that
uses the MPI communication layer underneath.

icetCreateMPICommunicator is used to create an IceTCommunicator that uses the
mpi comm MPI communication object. The resulting IceTCommunicator shares the same
process group and process rank as the original MPI Comm communicator.

mpi comm is duplicated, which has two consiquences. First, all process in mpi comm’s group
may need to call icetCreateMPICommunicator in order for any of them to proceed (de-
pending on the MPI implementation). Second, mpi comm and the resulting IceTCommunica-
tor are decoupled from each other. Communications in one cannot affect another. Also, one
communicator may be destroyed without affecting the other.

RETURN VALUE

An IceTCommunicator with the same process group and rank as mpi comm. The com-
municator may be destroyed with a call to icetDestroyMPICommunicator.

ERRORS

None.

140

icetCreateMPICommunicator

WARNINGS

None.

BUGS

All MPI errors are ignored.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetDestroyMPICommunicator, icetCreateContext

141

icetDataReplicationGroup

NAME

icetDataReplicationGroup – define data replication.

SYNOPSIS

#include <IceT.h>

void icetDataReplicationGroup(IceTInt size,
const IceTInt * processes);

DESCRIPTION

IceT has the ability to take advantage of geometric data that is replicated among processes.
If a group of processes share the same geometry data, then IceT will split the region of the dis-
play that the data projects onto among the processes, thereby reducing the total amount of image
composition work that needs to be done.

Each group can be declared by calling icetDataReplicationGroup and defining the
group of processes that share the geometry with the local process. size indicates how many
processes belong to the group, and processes is an array of ids of processes that belong to the
group. Each process that belongs to a particular group must call icetDataReplication-
Group with the exact same list of processes in the same order.

You can alternately use icetDataReplicationGroupColor to select data replication
groups.

By default, each process belongs to a group of size one containing just the local processes (i.e.
there is no data replication).

ERRORS

ICET INVALID VALUE processes does not contain the local process rank.

WARNINGS

None.

142

icetDataReplicationGroup

BUGS

IceT assumes that icetDataReplicationGroup is called with the exact same parameters
on all processes belonging to a given group. Likewise, IceT also assumes that all processes have
called icetBoundingVertices or icetBoundingBox with the exact same parameters on
all processes belonging to a given group. These requirements are not strictly enforced, but failing
to do so may cause some of the geometry to not be rendered.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetDataReplicationGroupColor, icetBoundingVertices, icetBound-
ingBox

143

icetDataReplicationGroupColor

NAME

icetDataReplicationGroupColor – define data replication.

SYNOPSIS

#include <IceT.h>

void icetDataReplicationGroupColor(IceTInt color);

DESCRIPTION

IceT has the ability to take advantage of geometric data that is replicated among processes.
If a group of processes share the same geometry data, then IceT will split the region of the dis-
play that the data projects onto among the processes, thereby reducing the total amount of image
composition work that needs to be done.

Despite the name of the function, icetDataReplicationGroupColor has nothing to
do the color of the data being replicated. Instead, color is used to mark the local process as
part of a given group. When icetDataReplicationGroupColor is called, it finds all other
processes that have the same color and builds a group based on this information.

icetDataReplicationGroupColor must be called on every processes before the func-
tion will return.

ERRORS

None.

WARNINGS

None.

BUGS

IceT assumes that icetDataReplicationGroup is called with the exact same parameters
on all processes belonging to a given group. Likewise, IceT also assumes that all processes have
called icetBoundingVertices or icetBoundingBox with the exact same parameters on
all processes belonging to a given group. These requirements are not strictly enforced, but failing

144

icetDataReplicationGroupColor

to do so may cause some of the geometry to not be rendered.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetDataReplicationGroup, icetBoundingVertices, icetBoundingBox

145

icetDestroyContext

NAME

icetDestroyContext – delete a context.

SYNOPSIS

#include <IceT.h>

void icetDestroyContext(IceTContext context ;

DESCRIPTION

Frees the memory required to hold the state of context and removes context from exis-
tence.

ERRORS

None.

WARNINGS

None.

BUGS

icetDestroyContext will happily delete the current context for you, but subsequent calls
to most other IceT functions will probably result in seg-faults unless you make another context
current with icetCreateContext or icetSetContext. The most notable execptions are
the functions with names matching icet*Context, which will work correctly without a proper
current context.

NOTES

Behavior is undefined if context has never been created or has already been destroyed.

146

icetDestroyContext

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetCreateContext

147

icetDestroyMPICommunicator

NAME

icetDestroyMPICommunicator – deletes a MPI communicator

SYNOPSIS

#include <IceTMPI.h>

void icetDestroyMPICommunicator(IceTCommunicator comm);

DESCRIPTION

Destroys an IceTCommunicator. comm becomes invalid and any memory or MPI re-
sources held by comm are freed.

Communicators are copied when attached to an IceT context, so destroying an IceTCommu-
nicator used to create a context still in use is safe.

ERRORS

None.

WARNINGS

None.

BUGS

All MPI errors are ignored.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

148

icetDestroyMPICommunicator

SEE ALSO

icetCreateMPICommunicator

149

icetDiagnostics

NAME

icetDiagnostics – change diagnostic reporting level.

SYNOPSIS

#include <IceT.h>

void icetDiagnostics(IceTBitField mask);

DESCRIPTION

Sets what diagnostic message are printed to standard output. The messages to be printed out
are defined by mask. mask consists of flags that are OR-ed together. The valid flags are:

ICET DIAG OFF A zero flag used to indicate that no diagnostic messages are desired.

ICET DIAG ERRORS Print messages associated with anomalous conditions.

ICET DIAG WARNINGS Print messages associated with conditions that are unexpected or may
lead to errors. Implicitly turns on ICET DIAG ERRORS.

ICET DIAG DEBUG Print frequent messages concerning the status of IceT. Implicitly turns on
ICET DIAG ERRORS and ICET DIAG WARNINGS.

ICET DIAG ROOT NODE Print messages only on the node with a process rank of 0. This is the
default if neither ICET DIAG ROOT NODE nor ICET DIAG ALL NODES is set.

ICET DIAG ALL NODES Print messages all every nodes.

ICET DIAG FULL Turn on all diagnostic messages on all nodes.

The default flags are ICET DIAG ALL NODES | ICET DIAG WARNINGS.

ERRORS

None.

WARNINGS

None.

150

icetDiagnostics

BUGS

None known.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetGetError

151

icetDrawCallback

NAME

icetDrawCallback – set a callback for drawing.

SYNOPSIS

#include <IceT.h>

typedef void (*IceTDrawCallbackType)(
const IceTDouble * projection matrix,
const IceTDouble * modelview matrix,
const IceTFloat * background color,
const IceTInt * readback viewport,
IceTImage result)

void icetDrawCallback(IceTDrawCallbackType callback);

DESCRIPTION

The icetDrawCallback function sets a callback that is used to draw the geometry from
a given viewpoint. If you are using OpenGL, you should probably use the icetGLDrawCall-
back function and associated icetGLDrawFrame. These alternative functions automatically
set up the OpenGL state and retreive OpenGL buffers.

callback should be a function that renders an image of the local geometry based on the
provided transformation matrices and background color. IceT will call callback during a call to
icetDrawFrame to create the images for compositing. callback will be called a minimum
amount of times. It may be called once. If none of the geometry projects on the display, it may not
be called at all. If rendering to a tiled display and the geometry projects on multiple tiles, it may
be called many times. The code in callback should be prepared to be called an unpredictable
amount of times. For example, it should not attept to increment a frame counter and it should leave
the rendering system’s state such that another view to the geometry may be rendered.

callback takes two projection matrices: projection matrix and modelview ma-
trix. Each of these arguments is a 16-value array that represents a 4× 4 transformation of ho-
mogeneous coordinates. The arrays store the matrices in column-major order. Thus, if the values
in projection matrix are (p[0], p[1], ...p[15]) and the values in modelview matrix are
(m[0],m[1], ...m[15]), then a vertex in object space is transformed into normalized screen coordi-

152

icetDrawCallback

nates by the sequence of operations


p[0] p[4] p[8] p[12]
p[1] p[5] p[9] p[13]
p[2] p[6] p[10] p[14]
p[3] p[7] p[11] p[15]




m[0] m[4] m[8] m[12]
m[1] m[5] m[9] m[13]
m[2] m[6] m[10] m[14]
m[3] m[7] m[11] m[15]




v[0]
v[1]
v[2]
v[3]


Normalized screen coordinates are such that everything projected onto the image has coordi-

nates in the range [−1,1]. The x and y coordinates have to be shifted to get the corresponding
pixel location. The normalized screen coordinates are projected to span the physical render size
(see icetPhysicalRenderSize), which may differ from the size of any particular tile. Also,
if you are outputting depth values, IceT expects values in the range [0,1], so you will have to shift
those as well.

Note that the projection matrix passed to callback is liable to be different than that
passed to icetDrawFrame. Make certain that callback uses the modified projection -
matrix passed to it. modelview matrix is the same as that passed to icetDrawFrame,
but also passed along for convienient reference.

Any pixel that does not have geometry rendered to it should be set to the background -
color passed to callback. Likewise, any transparent geometry should be blended against the
background color. Note that the background color passed to callback is liable to be
different than that passed to icetDrawFrame.

callback is given result, an image object allocated to the size of the physical render
size (see icetPhysicalRenderSize). The dimensions of the image can be queried with
icetImageGetWidth and icetImageGetHeight. Pixels can be put in result by getting
the color and/or depth buffers using the icetImageGetColor and icetImageGetDepth
functions. Anything written to these buffers is captured in the image object.

IceT passes callback an image sized to the physical render space to make indexing into
it clearer and safer and to possibly render directly into the image buffers. That said, IceT might
only be interested in a subregion of the data. To make your callback more efficient, IceT provides
readback viewport to specify the region of the image it will read. readback viewport
has four values. The first two values specify the x and y pixel location of the lower left corner of
the region of interest. The last two values specify the width and height of the region of interest.
The callback only has to write valid pixels for this region of the image. It is not an error to write
values outside this region, but they will be completely ignored.

The callback function pointer is placed in the ICET DRAW FUNCTION state variable.

ERRORS

None.

153

icetDrawCallback

WARNINGS

None.

BUGS

None known.

NOTES

callback is tightly coupled with the bounds set with icetBoundingVertices or
icetBoundingBox. If the geometry drawn by callback is dynamic (changes from frame
to frame), then the bounds may need to be changed as well. Incorrect bounds may cause the
geometry to be culled in surprising ways.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetBoundingBox, icetBoundingVertices, icetDrawFrame, icetPhysi-
calRenderSize

154

icetDrawFrame

NAME

icetDrawFrame – renders and composites a frame

SYNOPSIS

#include <IceT.h>

IceTImage icetDrawFrame(const IceTDouble * projection matrix,
const IceTDouble * modelview matrix,
const IceTFloat * background color);

DESCRIPTION

Initiates a frame draw using the given transformation matrices (modelview and projection). If
you are using OpenGL, you should probably use the icetGLDrawFrame function and associated
icetGLDrawCallback.

Before IceT may render an image, the tiled display needs to be defined (using icetAddTile),
the drawing function needs to be set (using icetDrawCallback), and composite strategy must
be set (using icetStrategy). The single image sub-strategy may also optionally be set (using
icetSingleImageStrategy).

All processes in the current IceT context must call icetDrawFrame for it to complete.

During compositing, IceT uses the given projection matrix and modelview matrix,
as well as the bounds given in the last call to icetBoundingBox or icetBoundingVer-
tices, to determine onto which pixels the local geometry projects. If the given matrices are not
the same used in the rendering or the given bounds do not contain the geometry, IceT may clip
the geometry in surprising ways. Furthermore, IceT will modify the projection matrix for
the drawing callback to change the projection onto (or in between) tiles. Thus, you should pass
the desired projection matrix to icetDrawFrame and then use the version passed to the
drawing callback.

RETURN VALUE

On each display process (as defined by icetAddTile, icetDrawFrame returns an im-
age of the fully composited image. The contents of the image are undefined for any non-display
process.

If the ICET COMPOSITE ONE BUFFER option is on and both a color and depth buffer is
specified with icetSetColorFormat and icetSetDepthFormat, then the returned image

155

icetDrawFrame

might be missing the depth buffer. The rational behind this option is that often both the color
and depth buffer is necessary in order to composite the color buffer, but the composited depth
buffer is not needed. In this case, the compositing might save some time by not transferring depth
information at the latter stage of compositing.

The returned image uses memory buffers that will be reclaimed the next time IceT renders a
frame. Do not use this image after the next call to icetDrawFrame (unless you have changed
the IceT context).

ERRORS

ICET INVALID OPERATION Raised if the icetGLInitialize has not been called or if
the drawing callback has not been set. Also can be raised if
icetDrawFrame is called recursively, probably from within
the drawing callback.

ICET OUT OF MEMORY Not enough memory left to hold intermittent frame buffers and
other temporary data.

icetDrawFrame may also indirectly raise an error if there is an issue with the strategy or
callback.

WARNINGS

None.

BUGS

If compositing with color blending on, the image returned may have a black background instead
of the background color requested. This can be corrected by blending the returned image
over the desired background. This will be done for you if the ICET CORRECT COLORED -
BACKGROUND is on.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

156

icetDrawFrame

SEE ALSO

icetAddTile, icetBoundingBox, icetBoundingVertices, icetDrawCall-
back, icetGLDrawFrame, icetSingleImageStrategy, icetStrategy

157

icetEnable

NAME

icetEnable, icetDisable– enable/disable an IceT feature.

SYNOPSIS

#include <IceT.h>

void icetEnable (IceTEnum pname);
void icetDisable (IceTEnum pname);

DESCRIPTION

The icetEnable and icetDisable functions turn various IceT features on and off.
pname is a symbolic constant representing the feature to be turned on or off. Valid values for
pname are:

ICET COLLECT IMAGES When this option is on (the default) images partitions are always col-
lected to display processes. When this option is turned off, the strategy has the option
of leaving images partitioned among processes. Each process containing part of a tile’s
image will return the entire buffer from icetDrawFrame or icetGLDrawFrame
in an IceTImage object. However, only certain pixels will be valid. The state vari-
ables ICET VALID PIXELS TILE, ICET VALID PIXELS OFFSET, and ICET -
VALID PIXELS NUM give which tile the pixels belong to and what range of pixels are
valid.

ICET COMPOSITE ONE BUFFER Turn this option on when performing z-buffer compositing
of a color image and the only result you need is the color image itself (not the depth
buffer). This is common if you are just creating an image and are not interested in doing
depth queries. This option is on by default.

ICET CORRECT COLORED BACKGROUND Colored backgrounds are problematic when per-
forming color blended compositing in that the background color will be additively
blended from each image. Enabling this flag will internally cause the color to be reset
to black and then cause the color to be blended back into the resulting images. This flag
is disabled by default.

ICET FLOATING VIEWPORT If enabled, the projection will be shifted such that the geometry
will be rendered in one shot whenever possible, even if the geometry straddles up to
four tiles. This flag is enabled by default.

ICET INTERLACE IMAGES If enabled, pixels in images (might be) shuffled to better load bal-
ance the compositing work. This flag is enabled by default.

158

icetEnable

ICET ORDERED COMPOSITE If enabled, the image composition will be performed in the order
specified by the last call to icetCompositeOrder, assuming the current strategy
(specified by a call to icetStrategy) supports ordered composition. Generally, you
want to enable ordered compositing if doing color blending and disable if you are doing
z-buffer comparisons. If enabled, you should call icetCompositeOrder between
each frame to update the image order as camera angles change. This flag is disabled by
default.

In addition, if you are using the OpenGL layer (i.e., have called icetGLInitialize), these
options, defined in IceTGL.h, are also available.

ICET GL DISPLAY If enabled, the final, composited image for each tile is written back to the
frame buffer before the return of icetGLDrawFrame. This flag is enabled by default.

ICET GL DISPLAY COLORED BACKGROUND If this and ICET GL DISPLAY are enabled,
IceT uses OpenGL blending to ensure that all background is set to the correct color.
This flag is disabled by default. This option does not affect the images returned from
icetGLDrawFrame; it only affects the image in the OpenGL color buffer.

ICET GL DISPLAY INFLATE If this and ICET GL DISPLAY are enabled and the renderable
window is larger than the displayed tile (as determined by the current OpenGL view-
port), then resample the image to fit within the renderable window before writing back
to frame buffer. This flag is disabled by default. This option does not affect the images
returned from icetGLDrawFrame; it only affects the image in the OpenGL color
buffer. If this option is not enabled, then images are written at their natural size in the
lower left corner of the window.

ICET GL DISPLAY INFLATE WITH HARDWARE This option determines how images are in-
flated. When enabled (the default), images are inflated by creating a texture and allow-
ing the hardware to inflate the image. When disabled, images are inflated on the CPU.
This option has no effect unless both ICET GL DISPLAY and ICET GL DISPLAY -
INFLATE are also enabled.

ERRORS

ICET INVALID VALUE If pname is not a feature to be enabled or disabled.

WARNINGS

None.

159

icetEnable

BUGS

The check for a valid pname is not thorough, and thus the ICET INVALID VALUE error may
not always be raised.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetIsEnabled

160

icetGet

NAME

icetGet – get an IceT state parameter

SYNOPSIS

#include <IceT.h>

void icetGetDoublev (IceTEnum pname,
IceTDouble * params);

void icetGetFloatv (IceTEnum pname,
IceTFloat * params);

void icetGetIntegerv (IceTEnum pname,
IceTInt * params);

void icetGetBooleanv (IceTEnum pname,
IceTBoolean * params);

void icetGetEnumv (IceTEnum pname,
IceTEnum * params);

void icetGetBitFieldv (IceTEnum pname,
IceTBitField * params);

void icetGetPointerv (IceTEnum pname,
IceTVoid ** params);

DESCRIPTION

Like OpenGL, the operation of IceT is defined by a large state machine. Also like OpenGL,
the state parameters can be retrieved through the icetGet functions. Each function takes a
symbolic constant, pname, which identifies the state parameter to retrieve. They also each take
an array, params, which will be filled with the values in pname. It is the calling application’s
responsibility to ensure that params is big enough to hold all the data.

STATE PARAMETERS

The following list identifies valid values for pname and a description of the associated state
parameter.

161

icetGet

ICET BACKGROUND COLOR The color that IceT is currently assuming is the background color.
It is an RGBA value that is stored as four floating point values. This value is set ei-
ther to the last value passed to icetDrawFrame, the OpenGL background color if
icetGLDrawFrame was called, or to black for color blending. (The correct back-
ground color is restored later.)

ICET BACKGROUND COLOR WORD The same as ICET BACKGROUND COLOR except that each
component is stored as 8-bit RGBA values and packed in a 4-byte integer. The idea is
to rapidly fill the background of color buffers.

ICET BLEND TIME The total time, in seconds, spent in performing color blending of images
during the last call to icetDrawFrame or icetGLDrawFrame. Stored as a double.
An alias for this value is ICET COMPARE TIME.

ICET BUFFER READ TIME The total time, in seconds, spent copying buffer data and read-
ing from OpenGL buffers during the last call to icetDrawFrame or icetGL-
DrawFrame. Stored as a double.

ICET BUFFER WRITE TIME The total time, in seconds, spent writing to OpenGL buffers
during the last call to icetGLDrawFrame. Always set to 0.0 after a call to
icetDrawFrame. Stored as a double.

ICET BYTES SENT The total number of bytes sent by the calling process for transferring image
data during the last call to icetDrawFrame or icetGLDrawFrame. Stored as an
integer.

ICET COLLECT TIME The total time spent in collecting image fragments to display processes
during the last call to icetDrawFrame or icetGLDrawFrame.

ICET COLOR FORMAT The color format of images to be created by the rendering subsystem
and composited by IceT. Use icetSetColorFormat to set the color format. Use
icetImageGetColorFormat to safely get the color format for a particular image.

ICET COMPARE TIME The total time, in seconds, spent in performing Z comparisons of images
during the last call to icetDrawFrame or icetGLDrawFrame. Stored as a double.
An alias for this value is ICET BLEND TIME.

ICET COMPOSITE MODE The composite mode set by icetCompositeMode. A single entry
stored as an IceTEnum.

ICET COMPOSITE ORDER The order in which images are to be composited if ICET OR-
DERED COMPOSITE is enabled and the current strategy supports ordered compositing.
The parameter contains ICET NUM PROCESSES entries. The value of this parameter
is set with icetCompositeOrder. If the element of index i in the array is set to j,
then there are i images “on top” of the image generated by process j.

ICET COMPOSITE TIME The total time, in seconds, spent in compositing
during the last call to icetDrawFrame or icetGLDrawFrame.

162

icetGet

Equal to ICET TOTAL DRAW TIME − ICET RENDER TIME −
ICET BUFFER READ TIME − ICET BUFFER WRITE TIME. Stored as a dou-
ble.

ICET COMPRESS TIME The total time, in seconds, spent in compressing image data using ac-
tive pixel encoding during the last call to icetDrawFrame or icetGLDrawFrame.
Stored as a double.

ICET DATA REPLICATION GROUP An array of process ids. There are ICET DATA REPLI-
CATION GROUP SIZE entries in the array. IceT assumes that all processes in the list
will create the exact same image with their draw functions (set with icetDrawCall-
back or icetGLDrawCallback). The local process id (ICET RANK) will be part
of this list.

ICET DATA REPLICATION GROUP SIZE The length of the ICET DATA REPLICATION -
GROUP array.

ICET DEPTH FORMAT The depth format of images to be created by the rendering subsystem
and composited by IceT. Use icetSetDepthFormat to set the depth format. Use
icetImageGetDepthFormat to safely get the depth format for a particular image.

ICET DIAGNOSTIC LEVEL The diagnostics flags set with icetDiagnostics.

ICET DISPLAY NODES An array of process ranks. The size of the array is equal to the number
of tiles (ICET NUM TILES). The ith entry is the rank of the process that is displaying
the tile described by the ith entry in ICET TILE VIEWPORTS.

ICET DRAW FUNCTION A pointer to the drawing callback function, as set by icetDraw-
Callback.

ICET FRAME COUNT The number of times icetDrawFrame or icetGLDrawFrame has
been called for the current context.

ICET GEOMETRY BOUNDS An array of vertices whose convex hull bounds the drawn geom-
etry. Set with icetBoundingVertices or icetBoundingBox. Each vertex
has three coordinates and are tightly packed in the array. The size of the array is
3×ICET NUM BOUNDING VERTS.

ICET GLOBAL VIEWPORT Defines a viewport in an infinite logical display that covers all tile
viewports (listed in ICET TILE VIEWPORTS). The viewport, like an OpenGL view-
port, is given as the integer four-tuple 〈x,y,width,height〉. x and y are placed at the
leftmost and lowest position of all the tiles, and width and height are just big enough
for the viewport to cover all tiles.

ICET MAGIC K The target k value used when compositing with the radix-k single image strategy.

ICET MAX IMAGE SPLIT The target number of maximum image splits to be performed by com-
positing strategies.

163

icetGet

ICET NUM BOUNDING VERTS The number of bounding vertices listed in the ICET GEOME-
TRY BOUNDS parameter.

ICET NUM TILES The number of tiles in the defined display. Basically equal to the number of
times icetAddTile was called after the last icetResetTiles.

ICET NUM PROCESSES The number of processes in the parallel job as given by the IceTCom-
municator object associated with the current context.

ICET PHYSICAL RENDER HEIGHT The height of the images generated by the rendering sys-
tem. This is set to the OpenGL viewport height by icetGLDrawFrame or otherwise
by explicitly setting it with icetPhysicalRenderSize or otherwise implicitly to
the largest tile height specified with icetAddTile.

ICET PHYSICAL RENDER WIDTH The width of the images generated by the rendering system.
This is set to the OpenGL viewport width by icetGLDrawFrame or otherwise by
explicitly setting it with icetPhysicalRenderSize or otherwise implicitly to the
largest tile width specified with icetAddTile.

ICET PROCESS ORDERS Basically, the inverse of ICET COMPOSITE ORDER. The parameter
contains ICET NUM PROCESSES entries. If the element of index i in the array is set
to j, then there are j images “on top” of the image generated by process i.

ICET RANK The rank of the process as given by the IceTCommunicator object associated
with the current context.

ICET RENDER TIME The total time, in seconds, spent in the drawing callback during the last
call to icetDrawFrame or icetGLDrawFrame. Stored as a double.

ICET SINGLE IMAGE STRATEGY The single image sub-strategy set with icetSingleIm-
ageStrategy. Use icetGetSingleImageStrategyName to get a user-
readable name for the single image strategy.

ICET STRATEGY The strategy set with icetStrategy. Use icetGetStrategyName to
get a user-readable name for the strategy.

ICET STRATEGY SUPPORTS ORDERING Is true if and only if the current strategy supports
ordered compositing.

ICET TILE DISPLAYED The index of the tile the local process is displaying. The index will
correspond to the tile entry in the ICET DISPLAY NODES and ICET TILE VIEW-
PORTS arrays. If set to 0 <= i < ICET NUM PROCESSES, then the ith entry of
ICET DISPLAY NODES is equal to ICET RANK. If the local process is not displaying
any tile, then ICET TILE DISPLAYED is set to −1.

ICET TILE MAX HEIGHT The maximum height of any tile.

ICET TILE MAX WIDTH The maximum width of any tile.

164

icetGet

ICET TILE VIEWPORTS A list of viewports in the logical global display defining the tiles. Each
viewport is the four-tuple 〈x,y,width,height〉 defining the position and dimensions of
a tile in pixels, much like a viewport is defined in OpenGL. The size of the array is
4 ∗ICET NUM TILES. The viewports are listed in the same order as the tiles were
defined with icetAddTile.

ICET TOTAL DRAW TIME Time spent in the last call to icetDrawFrame or icetGL-
DrawFrame. This includes all the time to render, read back, compress, and composite
images. Stored as a double.

ICET VALID PIXELS NUM In conjunction with ICET VALID PIXELS OFFSET, gives the
range of valid pixels for the last image returned from icetDrawFrame or icetGL-
DrawFrame. Given the arrays of pixels returned with the icetImageGetColor
and icetImageGetDepth functions, the valid pixels start at the pixel indexed by
ICET VALID PIXELS OFFSET and continue for ICET VALID PIXELS NUM. The
tile to which these pixels belong are captured in the ICET VALID PIXELS TILE
state variable. If the last call to icetDrawFrame or icetGLDrawFrame did not
return pixels for the local process, ICET VALID PIXELS NUM is set to 0. This state
variable is only useful when ICET COLLECT IMAGES is off. If on, it can be assumed
that all display processes contain all pixels in the image (ICET VALID PIXELS NUM
is the number of pixels in the image), and all other processes have no pixel data.

ICET VALID PIXELS OFFSET In conjunction with ICET VALID PIXELS NUM, gives the
range of valid pixels for the last image returned from icetDrawFrame or icetGL-
DrawFrame. Given the arrays of pixels returned with the icetImageGetColor
and icetImageGetDepth functions, the valid pixels start at the pixel indexed by
ICET VALID PIXELS OFFSET and continue for ICET VALID PIXELS NUM. The
tile to which these pixels belong are captured in the ICET VALID PIXELS TILE
state variable. This state variable is only useful when ICET COLLECT IMAGES is
off. If on, it can be assumed that all display processes contain all pixels in the image
(ICET VALID PIXELS OFFSET is 0), and all other processes have no pixel data.

ICET VALID PIXELS TILE Gives the tile for which the last image returned from
icetDrawFrame or icetGLDrawFrame contains pixels. Each process has its own
value. If the last call to icetDrawFrame or icetGLDrawFrame did not return
pixels for the local process, then this state variable is set to −1. This state variable
is only useful when ICET COLLECT IMAGES is off. If on, it can be assumed that
all display processes have valid pixels for their respective display tiles, and all other
processes have no pixel data.

In addition, if you are using the OpenGL layer (i.e., have called icetGLInitialize), these
variables, defined in IceTGL.h, are also available.

ICET GL DRAW FUNCTION A pointer to the OpenGL drawing callback function, as set by
icetGLDrawCallback.

165

icetGet

ICET GL READ BUFFER The OpenGL buffer to read from (and write to). Set with icetGLSe-
tReadBuffer.

ERRORS

ICET BAD CAST The state parameter requested is of a type that cannot be cast to
the output type.

ICET INVALID ENUM pname is not a valid state parameter.

WARNINGS

None.

BUGS

None known.

NOTES

Not every state variable is documented here. There is a set of parameters used internally by
IceT or are more appropriately retrieved with other functions such as icetIsEnabled.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetIsEnabled, icetGetStrategyName

166

icetGetContext

NAME

icetGetContext – retrieves the current context

SYNOPSIS

#include <IceT.h>

IceTContext icetGetContext(void);

DESCRIPTION

The icetGetContext function retrieves the handle for the current context. This handle
may be stored and set for later use with icetSetContext (assuming the context has not been
since destroyed).

RETURN VALUE

A handle for the current context.

ERRORS

None.

WARNINGS

None.

BUGS

None known.

COPYRIGHT

Copyright c©2003 Sandia Corporation

167

icetGetContext

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetSetContext, icetCreateContext, icetDestroyContext, icetCopyS-
tate

168

icetGetError

NAME

icetGetError – return the last error condition.

SYNOPSIS

#include <IceT.h>

GLenum icetGetError(void);

DESCRIPTION

Retrieves the first error or warning condition that occurred since the last call to icetGetEr-
ror or since program startup, whichever happened last.

Once an error condition has been retrieved with icetGetError, the error condition is reset
to no error and cannot be retrieved again.

RETURN VALUE

One of the following flags will be returned:

ICET INVALID VALUE An inappropriate value has been passed to a function.

ICET INVALID OPERATION An inappropriate function has been called.

ICET OUT OF MEMORY IceT has ran out of memory for buffer space.

ICET BAD CAST A function has been passed a value of the wrong type.

ICET INVALID ENUM A function has been passed an invalid constant.

ICET SANITY CHECK FAIL An internal error (or warning) has occurred.

ICET NO ERROR No error has been raised since the last call to icetGetError.

BUGS

It is not possible to tell if the returned value was caused by an error or a warning.

169

icetGetError

NOTES

The error value is not context dependent.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetDiagnostics

170

icetGetSingleImageStrategyName

NAME

icetGetSingleImageStrategyName – retrieve single image sub-strategy name.

SYNOPSIS

#include <IceT.h>

const char *icetGetSingleImageStrategyName(void);

DESCRIPTION

icetGetSingleImageStrategyName retrieves a human-readable name for the current
single image sub-strategy.

RETURN VALUE

Returns a short, null terminated string identifying the single image strategy currently in effect.
Helpful for printing out debugging or diagnostic statements.

ERRORS

None.

WARNINGS

None.

BUGS

None known.

NOTES

The string returned does not contain the identifier used in a C program. For example, if
the current single image strategy is ICET SINGLE IMAGE STRATEGY BSWAP, icetGetS-

171

icetGetSingleImageStrategyName

ingleImageStrategyName returns “Binary Swap,” not “ICET SINGLE IMAGE STRAT-
EGY BSWAP.”

COPYRIGHT

Copyright c©2010 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetGetStrategyName, icetSingleImageStrategy

172

icetGetStrategyName

NAME

icetGetStrategyName – retrieve strategy name.

SYNOPSIS

#include <IceT.h>

const char *icetGetStrategyName(void);

DESCRIPTION

icetGetStrategyName retrieves a human-readable name for the current strategy.

RETURN VALUE

Returns a short, null terminated string identifying the strategy currently in effect. Helpful for
printing out debugging or diagnostic statements. If no strategy is set, NULL is returned.

ERRORS

ICET INVALID ENUM A strategy was never set with icetStrategy.

WARNINGS

None.

BUGS

None known.

NOTES

The string returned does not contain the identifier used in a C program. For example, if the cur-
rent strategy is ICET STRATEGY REDUCE, icetGetStrategyName returns “Reduce,” not
“ICET STRATEGY REDUCE.”

173

icetGetStrategyName

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetGetSingleImageStrategyName, icetStrategy

174

icetGLDrawCallback

NAME

icetGLDrawCallback – set a callback for drawing with OpenGL.

SYNOPSIS

#include <IceTGL.h>

typedef void (* IceTGLDrawCallbackType)(void);

void icetGLDrawCallback(IceTGLDrawCallbackType callback);

DESCRIPTION

The icetGLDrawCallback function sets a callback that is used to draw the geometry from
a given viewpoint. It will be implicitly called from within icetGLDrawFrame.

callback should be a function that issues appropriate OpenGL calls to draw geometry in the
current OpenGL context. After callback is called, the image left in the frame buffer specified
by icetGLSetReadBuffer will be read back for compositing.

callback should not modify the GL PROJECTION MATRIX as this would cause IceT to
place image data in the wrong location in the tiled display and improperly cull geometry. It is ac-
ceptable to add transformations to GL MODELVIEW MATRIX, but the bounding vertices given
with icetBoundingVertices or icetBoundingBox are assumed to already be trans-
formed by any such changes to the modelview matrix. Also, GL MODELVIEW MATRIX must be
restored before the draw function returns. Therefore, any changes to GL MODELVIEW MATRIX
are to be done with care and should be surrounded by a pair of glPushMatrix and glPopMatrix
functions.

It is also important that callback not attempt the change the clear color. In some composting
modes, IceT needs to read, modify, and change the background color. These operations will be lost
if callback changes the background color, and severe color blending artifacts may result.

IceT may call callback several times from within a call to icetGLDrawFrame or not at all
if the current bounds lie outside the current viewpoint. This can have a subtle but important impact
on the behavior of callback. For example, counting frames by incrementing a frame counter
in callback is obviously wrong (although you could count how many times a render occurs).
callback should also leave OpenGL in a state such that it will be correct for a subsequent
run of callback. Any matrices or attributes pushed in callback should be popped before
callback returns, and any state that is assumed to be true on entrance to callback should
also be true on return.

The callback function pointer is placed in the ICET GL DRAW FUNCTION state variable.

175

icetGLDrawCallback

icetGLDrawCallback is similar to icetDrawCallback. The difference is that the
callback set by icetGLDrawCallback is used by icetGLDrawFrame and the callback set
by icetDrawCallback is used by icetDrawFrame.

ERRORS

ICET INVALID OPERATION Raised if the icetGLInitialize has not been called.

WARNINGS

None.

BUGS

None known.

NOTES

callback is tightly coupled with the bounds set with icetBoundingVertices or
icetBoundingBox. If the geometry drawn by callback is dynamic (changes from frame
to frame), then the bounds may need to be changed as well. Incorrect bounds may cause the
geometry to be culled in surprising ways.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetBoundingBox, icetBoundingVertices, icetDrawCallback, icetGL-
DrawFrame

176

icetGLDrawFrame

NAME

icetGLDrawFrame – renders and composites a frame using OpenGL

SYNOPSIS

#include <IceTGL.h>

void icetGLDrawFrame(void);

DESCRIPTION

Initiates a frame draw using the current OpenGL transformation matrices (modelview and pro-
jection).

Before IceT may render an image, the tiled display needs to be defined (using icetAddTile),
the drawing function needs to be set (using icetGLDrawCallback), and composite strategy
must be set (using icetStrategy). The single image sub-strategy may also optionally be set
(using icetSingleImageStrategy).

All processes in the current IceT context must call icetGLDrawFrame for it to complete.

The OpenGL projection matrix and modelview matrix must be set using glLoadMatrix or a
number of other functions. Likewise, the OpenGL background color must be set with glClear-
Color. IceT will use the matrices to determine what pixels need to be rendered and composited.
IceT will also modify the projection matrix to project onto (or in between) tiles.

If ICET GL DISPLAY is enabled, then the fully composited image is written back to the
OpenGL framebuffer for display. It is the application’s responsibility to synchronize the pro-
cesses and swap front and back buffers. If the OpenGL background color is set to something other
than black, ICET GL DISPLAY COLORED BACKGROUND should also be enabled. Displaying
with ICET GL DISPLAY COLORED BACKGROUND disabled may be slightly faster (depending
on graphics hardware) but can result in black rectangles in the background. If ICET GL DIS-
PLAY INFLATE is enabled and the size of the renderable window (determined by the current
OpenGL viewport) is greater than that of the tile being displayed, then the image will first be
“inflated” to the size of the actual display. This inflation will be assisted by texture hardware if
ICET GL DISPLAY INFLATE WITH HARDWARE is on. If ICET GL DISPLAY INFLATE is
disabled, the image is drawn at its original resolution at the lower left corner of the display.

The image remaining in the frame buffer is undefined if ICET GL DISPLAY is disabled or the
process is not displaying a tile.

177

icetGLDrawFrame

ERRORS

ICET INVALID OPERATION Raised if the drawing callback has not been set. Also can be
raised if icetDrawFrame is called recursively, probably from
within the drawing callback.

ICET OUT OF MEMORY Not enough memory left to hold intermittent frame buffers and
other temporary data.

icetGLDrawFrame may also indirectly raise an error if there is an issue with the strategy or
callback.

WARNINGS

None.

BUGS

If compositing with color blending on, the image returned may have a black background instead
of the background color requested. This can be corrected by blending the returned image
over the desired background. This will be done for you if the ICET CORRECT COLORED -
BACKGROUND is on.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetAddTile, icetBoundingBox, icetBoundingVertices, icetDrawFrame,
icetGLDrawCallback, icetSingleImageStrategy, icetStrategy

178

icetGLInitialize

NAME

icetGLInitialize – initialize the IceT OpenGL layer

SYNOPSIS

#include <IceTGL.h>

void icetGLInitialize(void);

DESCRIPTION

Initializes the OpenGL layer of IceT. icetGLInitialize must be called before any other
function starting with icetGL (except icetGLIsInitialized).

Management for the OpenGL layer is held in the state of the current IceT context. Thus,
icetGLInitialize must be called once per IceT context. If you are using a context for ren-
dering with OpenGL, it is recommended that you call icetGLInitialize immediately after
calling icetCreateContext.

ERRORS

None.

WARNINGS

ICET INVALID OPERATION icetGLInitialize is called twice for the same context.

BUGS

None known.

COPYRIGHT

Copyright c©2010 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

179

icetGLInitialize

This source code is released under the New BSD License.

SEE ALSO

icetCreateContext, icetGLIsInitialized

180

icetGLIsInitialized

NAME

icetGLIsInitialized – determine if the IceT OpenGL layer is initialized

SYNOPSIS

#include <IceTGL.h>

IceTBoolean icetGLIsInitialized(void);

DESCRIPTION

Used to determine whether icetGLInitialize was called for the current IceT context. If
icetGLIsInitialized returns false, then rendering with the OpenGL layer will not work.

RETURN VALUE

Returns ICET TRUE if the OpenGL layer has been initialized for the current context, ICET -
FALSE otherwise.

ERRORS

None.

WARNINGS

None.

BUGS

None known.

COPYRIGHT

Copyright c©2010 Sandia Corporation

181

icetGLIsInitialized

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetGLInitialize

182

icetGLSetReadBuffer

NAME

icetGLSetReadBuffer – set OpenGL buffer for images

SYNOPSIS

#include <IceTGL.h>

void icetGLSetReadBuffer(GLenum mode);

DESCRIPTION

Set the OpenGL buffer from which to read images to composite. After the draw callback
(specified by icetGLDrawCallback) returns, IceT grabs the rendered image from the OpenGL
buffer specified by mode. This buffer is also used to write back fully composited images if the
ICET GL DISPLAY option is on.

mode is an OpenGL value that specifies the buffer. It is passed to glReadBuffer and gl-
DrawBuffer. Accepted values are GL FRONT, GL BACK, GL LEFT, GL RIGHT, GL FRONT -
LEFT, GL FRONT RIGHT, GL BACK LEFT, GL BACK RIGHT, and any of the GL AUXi identi-
fiers.

The current read buffer used is stored in the ICET GL READ BUFFER state variable. The
default value is GL BACK.

ERRORS

ICET INVALID OPERATION icetGLInitialize has not been called for this IceT con-
text.

ICET INVALID ENUM mode is not a known OpenGL buffer identifier.

WARNINGS

None.

BUGS

The check of mode is perfunctory. It just checks mode against a list of known buffers. It does
not check to see if the buffer actually exists or for any other buffers that might be defined in an

183

icetGLSetReadBuffer

OpenGL extension.

COPYRIGHT

Copyright c©2010 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetGLDrawCallback

184

icetImageCopyColor

NAME

icetImageCopyColor, icetImageCopyDepth– retrieve pixel data from image

SYNOPSIS

#include <IceT.h>

void icetImageCopyColorub (const IceTImage image,
IceTUByte * color buffer,
IceTEnum color format);

void icetImageCopyColorf (const IceTImage image,
IceTFloat * color buffer,
IceTEnum color format);

void icetImageCopyDepthf (const IceTImage image,
IceTFloat * depth buffer,
IceTEnum depth format);

DESCRIPTION

The icetImageCopyColor suite of functions retrieve color data from images and the ice-
tImageCopyDepth functions retrieve depth data from images. Each function takes a pointer to
an existing buffer that must be large enough to hold all pixels in the image. The data from the
images is copied into these buffers, performing format conversions as necessary. Because data is
copied into the provided buffer, subsequently changing values in the buffer has no effect on the im-
age object (as opposed to the behavior of icetImageGetColor and icetImageGetDepth).

The pixel data is always tightly packed in horizontal major order. Color data that comprises
tuples such as RGBA have the components for each pixel packed together in that order. The first
entry in the array corresponds to the pixel in the lower left corner of the image. The next entry is
immediately to the right of the first pixel, and so on. The dimensions of the array can be retrieved
with the icetImageGetWidth and icetImageGetHeight functions.

Each of these functions provides a typed version of the image data array. They can only succeed
if the type the request matches the type specified by the color format or depth format
argument. It is an error, for example, to request unsigned byte color data for a floating point color
format. Although specifying the format may be redundant (it could be implied by the type being
retrieved), IceT requires it for completeness and to support possible future data formats.

Use icetImageCopyColorub to retrieve an array of 8-bit unsigned bytes. Using this func-
tion is only valid if color format is ICET IMAGE COLOR RGBA UBYTE.

185

icetImageCopyColor

Use icetImageCopyColorf to retrieve an array of floating point color values. Using this
function is only valid if color format is ICET IMAGE COLOR RGBA FLOAT.

Use icetImageGetDepthf to retrieve an array of floating point depth values. Using this
function is only valid if depth format is ICET IMAGE DEPTH FLOAT.

ERRORS

ICET INVALID OPERATION The image object does not have a color or depth buffer from
which to copy data.

ICET INVALID ENUM The requested color format or depth format is incom-
patible with the type of the buffer.

WARNINGS

None.

BUGS

None known.

COPYRIGHT

Copyright c©2010 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetImageGetColor, icetImageGetDepth

186

icetImageGetColor

NAME

icetImageGetColor, icetImageGetDepth– retrieve pixel data buffer from image

SYNOPSIS

#include <IceT.h>

IceTUByte * icetImageGetColorub (IceTImage image);
IceTUInt * icetImageGetColorui (IceTImage image);
IceTFloat * icetImageGetColorf (IceTImage image);

IceTFloat * icetImageGetDepthf (IceTImage image);

const IceTUByte * icetImageGetColorcub (const IceTImage image);
const IceTUInt * icetImageGetColorcui (const IceTImage image);
const IceTFloat * icetImageGetColorcf (const IceTImage image);

const IceTFloat * icetImageGetDepthcf (const IceTImage image);

DESCRIPTION

The icetImageGetColor suite of functions retrieve color data from images and the ice-
tImageGetDepth functions retrieve depth data from images. Each function returns a pointer
to an internal buffer within the image. Writing to this data changes the data within the image ob-
ject itself. Use the icetImageGetColor and icetImageGetDepth functions from within
drawing callbacks to pass image data back to IceT.

The pixel data is always tightly packed in horizontal major order. Color data that comprises
tuples such as RGBA have the components for each pixel packed together in that order. The first
entry in the array corresponds to the pixel in the lower left corner of the image. The next entry is
immediately to the right of the first pixel, and so on. The dimensions of the array can be retrieved
with the icetImageGetWidth and icetImageGetHeight functions.

Each of these functions returns a typed version of the image data array. They can only suc-
ceed if the type the request matches the internal type of the array. It is an error, for example, to
request unsigned byte color data when the image stores images as floating point colors. You can
use the icetImageGetColorFormat and icetImageGetDepthFormat to retrieve the
format for the internal data storage (which also implies the base data type). You can also use the
icetImageCopyColor and icetImageCopyDepth functions to convert the image data to
whatever format you like.

Use icetImageGetColorub to retrieve an array of 8-bit unsigned bytes. Using this func-

187

icetImageGetColor

tion is only valid if the color format is ICET IMAGE COLOR RGBA UBYTE.

Use icetImageGetColorui to retrieve an array of 32-bit unsigned integers. Using this
function is only valid if the color format is ICET IMAGE COLOR RGBA UBYTE. In this case,
each 32-bit integer represents all four RGBA channels. Accessing each pixel’s color values as a
single 32-bit integer is often faster than accessing it as 4 independent 8-bit integers as most modern
architectures can access 32-bit memory boundaries faster than independent 8-bit boundaries.

Use icetImageGetColorf to retrieve an array of floating point color values. Using this
function is only valid if the color format is ICET IMAGE COLOR RGBA FLOAT.

Use icetImageGetDepthf to retrieve an array of floating point depth values. Using this
function is only valid if the depth format is ICET IMAGE DEPTH FLOAT.

RETURN VALUE

Returns an appropriately typed array pointing to the internal color or depth values stored in the
image object. If there is an error, NULL is returned.

The memory returned should not be freed. It is managed internally by IceT.

ERRORS

ICET INVALID OPERATION The internal color or depth format is incompatible with the type
of array the function retrieves.

WARNINGS

None.

BUGS

None known.

NOTES

There is no mechanism to automatically determine the data type from the color or depth format
enumeration (returned from icetImageGetColorFormat or icetImageGetDepthFor-
mat). Instead, you must code internal logic to use an array of the appropriate type. The reasoning
behind this decision is that the format encodes the data layout in addition to the data type, and your

188

icetImageGetColor

code most understand the basic semantics of the data to do anything worthwhile with it. If you
want to write code that is indifferent to the underlying format of the image, use the icetImage-
CopyColor and icetImageCopyDepth functions to copy the data to a known format.

COPYRIGHT

Copyright c©2010 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetImageCopyColor, icetImageCopyDepth, icetImageGetColorFormat,
icetImageGetDepthFormat

189

icetImageGetColorFormat

NAME

icetImageGetColorFormat, icetImageGetDepthFormat– get the format of im-
age buffers

SYNOPSIS

#include <IceT.h>

IceTEnum icetImageGetColorFormat (const IceTImage image);
IceTEnum icetImageGetDepthFormat (const IceTImage image);

DESCRIPTION

icetImageGetColorFormat and icetImageGetDepthFormat return an entry in an
enumeration that specifies the data format stored in the given image. This format determines
which one of the icetImageGetColor or icetImageGetDepth functions to use and the
form of the resulting data.

RETURN VALUE

icetImageGetColorFormat returns one of the following values with the associated
meaning for the format of the stored color data.

ICET IMAGE COLOR RGBA UBYTE Each entry is an RGBA color tuple. Each component
is valued in the range from 0 to 255 and is stored as
an 8-bit integer. The buffer will always be allocated
on memory boundaries such that each color value can
be treated as a single 32-bit integer.

ICET IMAGE COLOR RGBA FLOAT Each entry is an RGBA color tuple. Each component
is in the range from 0.0 to 1.0 and is stored as a 32-bit
float.

ICET IMAGE COLOR NONE No color values are stored in the image.

icetImageGetDepthFormat returns one of the following values with the associated
meaning for the format of the stored depth data.

ICET IMAGE DEPTH FLOAT Each entry is in the range from 0.0 (near plane) to 1.0
(far plane) and is stored as a 32-bit float.

190

icetImageGetColorFormat

ICET IMAGE DEPTH NONE No depth values are stored in the image.

ERRORS

None.

WARNINGS

None.

BUGS

None known.

COPYRIGHT

Copyright c©2010 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetImageGetColor, icetImageGetDepth, icetSetColorFormat, icetSet-
DepthFormat

191

icetImageGetNumPixels

NAME

icetImageGetWidth, icetImageGetHeight, icetImageGetNumPixels– get
dimensions of an image

SYNOPSIS

#include <IceT.h>

IceTSizeType icetImageGetWidth (const IceTImage image);
IceTSizeType icetImageGetHeight (const IceTImage image);
IceTSizeType icetImageGetNumPixels (const IceTImage image);

DESCRIPTION

icetImageGetWidth, icetImageGetHeight, and icetImageGetNumPixels al-
low you to query the size of an imagewith respect to the number of pixels. These functions define
the buffer size returned by icetImageGetColor and icetImageGetDepth.

RETURN VALUE

icetImageGetWidth returns the number of pixels along the horizontal axis of the image
and icetImageGetHeight returns the number of pixels along the vertical axis of the image.
icetImageGetNumPixels is a convenience function that returns the total number of pixels in
image (the width times the height).

ERRORS

None.

WARNINGS

None.

BUGS

None known.

192

icetImageGetNumPixels

COPYRIGHT

Copyright c©2010 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetImageGetColor, icetImageGetDepth

193

icetImageIsNull

NAME

icetImageIsNull – check for a null image

SYNOPSIS

#include <IceT.h>

IceTBoolean icetImageIsNull(IceTImage image);

DESCRIPTION

Tests whether image is a null image. A null image is one that has no memory allocated to it.
Null images have no pixels and empty pixel formats.

Null images are created with the icetImageNull function.

RETURN VALUE

Returns ICET TRUE if image is a null image, ICET FALSE otherwise.

ERRORS

None.

WARNINGS

None.

BUGS

None known.

COPYRIGHT

Copyright c©2010 Sandia Corporation

194

icetImageIsNull

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetImageNull

195

icetImageNull

NAME

icetImageNull – retrieve a placeholder for an empty image.

SYNOPSIS

#include <IceT.h>

IceTImage icetImageNull(void);

DESCRIPTION

Images are created internally by the IceT library. Sometimes it is convenient to have a place-
holder for a “null” image, an image that does not and cannot hold data. Null images require no
allocated memory to function.

If your code has the potential of using an IceTImage image object that might not otherwise
be initialized, use icetImageNull to set it to a null object. This will ensure that IceT image
functions that operate on it will behave deterministically.

A null image simply looks like an image with no pixels and has no color buffers. icetIm-
ageGetWidth, icetImageGetHeight, and icetImageGetNumPixels all return 0 for
a null image. icetSetColorFormat and icetSetDepthFormat return ICET IMAGE -
COLOR NONE and ICET IMAGE DEPTH NONE, respectively.

You can identify a null image with the icetImageIsNull function.

RETURN VALUE

A null image object.

ERRORS

None.

WARNINGS

None.

196

icetImageNull

BUGS

None known.

COPYRIGHT

Copyright c©2010 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetImageIsNull

197

icetIsEnabled

NAME

icetIsEnabled – query enabled status of an IceT feature.

SYNOPSIS

#include <IceT.h>

IceTBoolean icetIsEnabled(IceTEnum pname);

RETURN VALUE

Returns ICET TRUE if the feature associated with pname is enabled, ICET FALSE (= 0) if
the feature is disabled.

ERRORS

ICET INVALID VALUE If pname is not a feature to be enabled or disabled.

WARNINGS

None.

BUGS

The check for a valid pname is not thorough, and thus the ICET INVALID VALUE error may
not always be raised.

NOTES

A list of valid values for pname is given in the documentation for icetEnable.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-

198

icetIsEnabled

ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetEnable, icetDisable

199

icetPhysicalRenderSize

NAME

icetPhysicalRenderSize – set the size of images that are rendered

SYNOPSIS

#include <IceT.h>

void icetPhysicalRenderSize(IceTInt width,
IceTInt height);

DESCRIPTION

Specify the size of images that are rendered with icetPhysicalRenderSize. This is the
size of image that is expected to be rendered by the draw callback (specified with icetDraw-
Callback). The width and height are captured in the ICET PHYSICAL RENDER WIDTH and
ICET PHYSICAL RENDER HEIGHT state variables.

The size of images that are rendered do not have to be the same size as the tile they are rendering
so long as they are not smaller in any dimension. In fact, when rendering multiple tiles it can often
save time to render larger images. Nevertheless, by default the physical render size is set to the
size of the tiles in icetAddTile because this is the most common use case.

When using the OpenGL rendering layer, the physical rendering size is overridden to the size
of the OpenGL viewport in each call to icetGLDrawFrame.

ERRORS

None.

WARNINGS

ICET INVALID VALUE The width or height specified is smaller than that for the
largest tile.

BUGS

None known.

200

icetPhysicalRenderSize

COPYRIGHT

Copyright c©2010 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetAddTile

201

icetResetTiles

NAME

icetResetTiles – clears out all tile definitions.

SYNOPSIS

#include <IceT.h>

void icetResetTiles(void);

DESCRIPTION

IceT defines its display as a set of tiles. icetResetTiles will empty this set. The set of
tiles is filled again with calls to icetAddTile.

As a side effect, icetResetTiles will also zero out the renderable window size (speci-
fied with state variables ICET PHYSICAL RENDER WIDTH and ICET PHYSICAL RENDER -
HEIGHT). The size will be reset with calls to icetAddTile.

ERRORS

None.

WARNINGS

None.

BUGS

None known.

NOTES

As a rule, a call to icetResetTiles should always be followed with one or more calls to
icetAddTile. icetDrawFrame will not work properly if no tiles are in existence.

202

icetResetTiles

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetAddTile

203

icetSetContext

NAME

icetSetContext – changes the current context.

SYNOPSIS

#include <IceT.h>

void icetSetContext(IceTContext context);

DESCRIPTION

The icetSetContext function sets the IceT state machine to work with the context defined
by context and the state associated with it. Further calls to IceT functions will operate based on
the state encapsulated in context. Changing the state of the context is a fast operation.

ERRORS

ICET INVALID VALUE context is not valid.

WARNINGS

None.

BUGS

None known.

NOTES

The behavior of icetSetContext is somewhat indeterminate if context is not valid.
Usually, an ICET INVALID VALUE error will be raised, but it is possible that the context will be
set to some other context.

204

icetSetContext

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetGetContext, icetCreateContext, icetCopyState

205

icetSetColorFormat

NAME

icetSetColorFormat, icetSetDepthFormat– specifies the buffer formats for IceT
to use when creating images

SYNOPSIS

#include <IceT.h>

void icetSetColorFormat (IceTEnum color format);
void icetSetDepthFormat (IceTEnum depth format);

DESCRIPTION

When IceT creates image objects, it uses the formats specified by icetSetColorFormat
and icetSetDepthFormat. These will be the formats of images passed to drawing callbacks
(specified by icetDrawCallback or icetGLDrawCallback) and of images returned from
frame drawing functions (icetDrawFrame or icetGLDrawFrame).

The following color formats are valid for use in icetSetColorFormat.

ICET IMAGE COLOR RGBA UBYTE Each entry is an RGBA color tuple. Each component
is valued in the range from 0 to 255 and is stored as
an 8-bit integer. The buffer will always be allocated
on memory boundaries such that each color value can
be treated as a single 32-bit integer.

ICET IMAGE COLOR RGBA FLOAT Each entry is an RGBA color tuple. Each component
is in the range from 0.0 to 1.0 and is stored as a 32-bit
float.

ICET IMAGE COLOR NONE No color values are stored in the image.

The following depth formats are valid for use in icetSetDepthFormat.

ICET IMAGE DEPTH FLOAT Each entry is in the range from 0.0 (near plane) to 1.0
(far plane) and is stored as a 32-bit float.

ICET IMAGE DEPTH NONE No depth values are stored in the image.

The color and depth formats are stored in the ICET COLOR FORMAT and ICET DEPTH -
FORMAT state variables, respectively.

206

icetSetColorFormat

ERRORS

ICET INVALID OPERATION icetSetColorFormat or icetSetDepthFormat was
called while IceT was drawing a frame. This probably means
that you called icetSetColorFormat in a drawing callback. You
cannot do that. Call this function before starting the draw oper-
ation.

ICET INVALID ENUM The color format or depth format given is invalid.

WARNINGS

None.

BUGS

None known.

NOTES

Calling either icetSetColorFormat or icetSetDepthFormat does not change the
format of any existing images. It only changes any subsequently created images.

The color format must be set before calling either icetDrawFrame or icetGL-
DrawFrame. Doing otherwise would create inconsistencies in the images created and composed
together.

COPYRIGHT

Copyright c©2010 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetImageGetColorFormat, icetImageGetDepthFormat

207

icetSingleImageStrategy

NAME

icetSingleImageStrategy – set the sub-strategy used to composite the image for a
single tile.

SYNOPSIS

#include <IceT.h>

void icetSingleImageStrategy(IceTEnum strategy);

DESCRIPTION

The main IceT algorithms are specially designed to composite data defined on multiple tiles.
Some of these algorithms, namely ICET STRATEGY REDUCE and ICET STRATEGY SEQUEN-
TIAL, operate at least in part by compositing single images together. IceT also comes with multi-
ple separate strategies for performing this single image compositing, and this can be selected with
the icetSingleImageStrategy function.

A single image strategy is chosen from one of the following provided enumerated values:

ICET SINGLE IMAGE STRATEGY AUTOMATIC Automatically chooses which single image
strategy to use based on the number of processes participating in the composition.

ICET SINGLE IMAGE STRATEGY BSWAP The classic binary swap compositing algorithm. At
each phase of the algorithm, each process partners with another, sends half of its image to
its partner, and receives the opposite half from its partner. The processes are then partitioned
into two groups that each have the same image part, and the algorithm recurses.

ICET SINGLE IMAGE STRATEGY RADIXK The radix-k acompositing algorithm is similar to
binary swap except that groups of processes can be larger than two. Larger groups require
more overall messages but overlap blending and communication. The size of the groups is
indirectly controlled by the ICET MAGIC K environment variable or CMake variable.

ICET SINGLE IMAGE STRATEGY TREE At each phase, each process partners with another,
and one of the processes sends its entire image to the other. The algorithm recurses with the
group of processes that received images until only one process has an image.

By default IceT sets the single image strategy to ICET SINGLE IMAGE STRATEGY AUTO-
MATIC when a context is created. This is the single image strategy that will be used if no other is
selected.

208

icetSingleImageStrategy

ERRORS

ICET INVALID ENUM The strategy argument does not represent a valid single im-
age strategy.

WARNINGS

None.

BUGS

None known.

COPYRIGHT

Copyright c©2010 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetDrawFrame, icetGetStrategyName icetSingleImageStrategy

209

icetStrategy

NAME

icetStrategy – set the strategy used to composite images.

SYNOPSIS

#include <IceT.h>

void icetStrategy(IceTEnum strategy);

DESCRIPTION

The IceT API comes packaged with several algorithms for compositing images. The algorithm
to use is determined by selecting a strategy. The strategy is selected with icetStrategy.
A strategy must be selected before icetDrawFrame is called.

A strategy is chosen from one of the following provided enumerated values:

ICET STRATEGY SEQUENTIAL Basically applies a “traditional” single tile composition (such
as binary swap) to each tile in the order they were defined. Because each process must take
part in the composition of each tile regardless of whether they draw into it, this strategy
is usually inefficient when compositing for more than one tile, but is recommended for the
single tile case because it bypasses some of the communication necessary for the other multi-
tile strategies.

ICET STRATEGY DIRECT As each process renders an image for a tile, that image is sent di-
rectly to the process that will display that tile. This usually results in a few processes receiv-
ing and processing the majority of the data, and is therefore usually an inefficient strategy.

ICET STRATEGY SPLIT Like ICET STRATEGY DIRECT, except that the tiles are split up,
and each process is assigned a piece of a tile in such a way that each process receives and
handles about the same amount of data. This strategy is often very efficient, but due to the
large amount of messages passed, it has not proven to be very scalable or robust.

ICET STRATEGY REDUCE A two phase algorithm. In the first phase, tile images are redis-
tributed such that each process has one image for one tile. In the second phase, a “traditional”
single tile composition is performed for each tile. Since each process contains an image for
only one tile, all these compositions may happen simultaneously. This is a well rounded
strategy that seems to perform well in a wide variety of multi-tile applications. (However, in
the special case where only one tile is defined, the sequential strategy is probably better.)

ICET STRATEGY VTREE An extension to the binary tree algorithm for image composition. Sets
up a “virtual” composition tree for each tile image. Processes that belong to multiple trees

210

icetStrategy

(because they render to more than one tile) are allowed to float between trees. This strategy
is not quite as well load balanced as ICET STRATEGY REDUCE or ICET STRATEGY -
SPLIT, but has very well behaved network communication.

Not all of the strategies support ordered image composition. ICET STRATEGY SEQUEN-
TIAL, ICET STRATEGY DIRECT, and ICET STRATEGY REDUCE do support ordered image
composition. ICET STRATEGY SPLIT and ICET STRATEGY VTREE do not support ordered
image composition and will ignore ICET ORDERED COMPOSITE if it is enabled.

Some of the strategies, namely ICET STRATEGY SEQUENTIAL and ICET STRATEGY -
REDUCE, use a sub-strategy that composites the image for a single tile. This single image strategy
can also be specified with icetSingleImageStrategy.

ERRORS

ICET INVALID ENUM The strategy argument does not represent a valid strategy.

WARNINGS

None.

BUGS

None known.

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetDrawFrame, icetGetStrategyName icetSingleImageStrategy

211

icetWallTime

NAME

icetWallTime – timer function

SYNOPSIS

#include <IceT.h>

IceTDouble icetWallTime(void)

DESCRIPTION

Retrieves the current time, in seconds. The returned values of icetWallTime are only valid
in relation to each other. That is, the time may or may not have anything to do with the cur-
rent date or time. However, the difference of values between two calls to icetWallTime is
the elapsed time in seconds between the two calls. Thus, icetWallTime is handy for deter-
mining the running time of various subprocesses. icetWallTime is used internally for deter-
mining the values for the state variables ICET BUFFER READ TIME, ICET BUFFER WRITE -
TIME, ICET COLLECT TIME, ICET COMPARE TIME, ICET COMPOSITE TIME, ICET -
COMPRESS TIME, ICET RENDER TIME, and ICET TOTAL DRAW TIME.

RETURN VALUE

The current time, in seconds.

ERRORS

None.

WARNINGS

None.

BUGS

None known.

212

icetWallTime

COPYRIGHT

Copyright c©2003 Sandia Corporation

Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Gov-
ernment retains certain rights in this software.

This source code is released under the New BSD License.

SEE ALSO

icetGet

213

Index

α, 49

active-pixel encoding, 54, 81, 94, 95
ADD EXECUTABLE, 17
alpha, 49
automatic composite selection, 68

background color, 51
binary swap composite, 65–66
binary tree composite, 64–65
blending, see compositing, blended

callback, see drawing callback
clear color, see background color
CMake, 15, 16, 58, 67, 110, 121
CMAKE BUILD TYPE, 110
CMakeLists.txt, 16
collection, 58–59
column-major order, 37, 41, 152
common.h, 100, 102
communicator, 18
compositing, 47–51

automatic selection, 68
binary swap, 65–66
blended, 49–51
network, 57–58
ordered, 50–51, 68
radix-k, 66–68
single image, 62–68
tree, 64–65
z-buffer, 48–49

compositing operation, 47–51, 64
context

IceT, 18, 27–29, 113, 114, 138
OpenGL, 18
current, 29

data replication, 56–57
debug, 30, 110
depth buffer, see compositing, z-buffer
diagnostics, 30–31, 110–111
direct send strategy, see strategy, direct
display definition, 31–34

display process, 11, 19, 20, 32, 33, 155
drawing callback, 20, 36–40, 42

error, 30, 110

FIND PACKAGE, 16
FindIceT.cmake, 121
floating viewport, 53
free, 79

GL/ice-t.h, 119
GL/ice-t mpi.h, 119
GL AUX, 183
GL BACK, 183
GL BACK LEFT, 183
GL BACK RIGHT, 183
GL FRONT, 183
GL FRONT LEFT, 183
GL FRONT RIGHT, 183
GL LEFT, 183
GL MODELVIEW MATRIX, 39, 43, 175
GL PROJECTION MATRIX, 39, 42, 175
GL RIGHT, 183
GL VIEWPORT, 34
glClearColor, 177
glDrawBuffer, 183
GLfloat, 119
glFrustum, 108
GLint, 119
glLoadIdentity, 108
glLoadMatrix, 177
glMultMatrix, 107
global display, 31
glOrtho, 108
glReadBuffer, 183
glRotate, 108
glScale, 108
glTranslate, 108
GLUT, 17, 18, 20
glViewport, 52, 126

hidden surface, 132

214

ice-t.h, 119
ice-t mpi.h, 119
icet (library), 121
IceT.h, 18, 27, 81, 114, 119
ICET ALL CONTAINED TILES MASKS, 77
ICET BACKGROUND COLOR, 162
ICET BACKGROUND COLOR WORD, 162
ICET BAD CAST, 110, 169
ICET BLEND FLOAT, 106
ICET BLEND TIME, 60, 162
ICET BLEND UBYTE, 106
ICET BOOLEAN, 96
ICET BUFFER READ TIME, 60, 162, 163,

212
ICET BUFFER WRITE TIME, 60, 162, 163,

212
ICET BYTE, 96, 99
ICET BYTES SENT, 60, 162
ICET COLLECT IMAGES, 59, 103, 158, 165
ICET COLLECT TIME, 60, 162, 212
ICET COLOR FORMAT, 82, 162, 206
ICET COMPARE TIME, 60, 162, 212
ICET COMPOSITE MODE, 95, 132, 162
ICET COMPOSITE MODE BLEND, 47, 49,

105, 132–134
ICET COMPOSITE MODE Z BUFFER, 47,

48, 132, 134
ICET COMPOSITE ONE BUFFER, 48, 49,

120, 155, 158
ICET COMPOSITE ORDER, 75, 103, 136,

162, 164
ICET COMPOSITE TIME, 60, 162, 212
ICET COMPRESS TIME, 60, 163, 212
ICET CONTAINED TILES LIST, 77, 78, 100,

101
ICET CONTAINED TILES MASK, 77
ICET CONTAINED VIEWPORT, 77, 78
ICET CORE LIBS, 17, 121
ICET CORRECT COLORED -

BACKGROUND, 51, 105, 156, 158,
178

ICET DATA REPLICATION GROUP, 57,
136, 163

ICET DATA REPLICATION GROUP SIZE,
57, 136, 163

ICET DEPTH FORMAT, 82, 163, 206
ICET DIAG ALL NODES, 30, 150
ICET DIAG DEBUG, 30, 110, 150
ICET DIAG ERRORS, 30, 150
ICET DIAG FULL, 31, 150
ICET DIAG OFF, 31, 150
ICET DIAG ROOT NODE, 30, 150
ICET DIAG WARNINGS, 30, 150
ICET DIAGNOSTIC LEVEL, 31, 163
ICET DISPLAY NODES, 33, 163, 164
ICET DOUBLE, 96, 130, 131
ICET DRAW FUNCTION, 153, 163
ICET FALSE, 75, 109, 181, 194, 198
ICET FAR DEPTH, 77, 78
ICET FLOAT, 96, 130, 131
ICET FLOATING VIEWPORT, 53, 158
ICET FRAME COUNT, 60, 163
ICET GEOMETRY BOUNDS, 163, 164
ICET GL DISPLAY, 43, 52, 159, 177, 183
ICET GL DISPLAY COLORED -

BACKGROUND, 43, 51, 159,
177

ICET GL DISPLAY INFLATE, 43, 52, 159,
177

ICET GL DISPLAY INFLATE WITH -
HARDWARE, 52, 159,
177

ICET GL DRAW FUNCTION, 165, 175
ICET GL LIBS, 17, 121
ICET GL READ BUFFER, 166, 183
ICET GLOBAL VIEWPORT, 33, 163
ICET IMAGE COLOR NONE, 44, 48, 49,

190, 196, 206
ICET IMAGE COLOR RGBA FLOAT, 44,

48, 186, 188, 190, 206
ICET IMAGE COLOR RGBA UBYTE, 44,

48, 185, 188, 190, 206
ICET IMAGE DEPTH FLOAT, 44, 48, 186,

188, 190, 206
ICET IMAGE DEPTH NONE, 44, 48, 49,

191, 196, 206
ICET IN PLACE COLLECT, 96
ICET INCLUDE DIRS, 17
ICET INT, 96, 130, 131
ICET INTERLACE IMAGES, 55, 91, 158

215

ICET INVALID ENUM, 110, 169
ICET INVALID OPERATION, 110, 169
ICET INVALID VALUE, 110, 160, 169
ICET IS DRAWING FRAME, 78
ICET MAGIC K, 35, 58, 63, 67, 163, 208
ICET MATRIX, 107
ICET MAX IMAGE SPLIT, 58, 163
ICET MODELVIEW MATRIX, 78
icet mpi (library), 121
ICET MPI LIBS, 17, 121
ICET NEAR DEPTH, 77, 78
ICET NEED BACKGROUND -

CORRECTION, 78, 103,
105

ICET NO ERROR, 169
ICET NUM BOUNDING VERTS, 163, 164
ICET NUM CONTAINED TILES, 77, 78
ICET NUM PROCESSES, 18, 77, 103, 126,

134, 136, 162, 164
ICET NUM TILES, 33, 77, 78, 103, 163–165
ICET ORDERED COMPOSITE, 50, 51,

132–134, 159, 162, 211
ICET OUT OF MEMORY, 110, 169
ICET PHYSICAL RENDER HEIGHT, 34,

164, 200, 202
ICET PHYSICAL RENDER WIDTH, 34,

164, 200, 202
ICET PROCESS ORDERS, 136, 164
ICET PROJECTION MATRIX, 78
ICET RANK, 18, 57, 98, 103, 136, 163, 164
ICET RENDER TIME, 60, 163, 164, 212
ICET SANITY CHECK FAIL, 110, 169
ICET SHORT, 96, 130, 131
ICET SI STRATEGY BUFFER, 81
ICET SI STRATEGY BUFFER 0, 81
ICET SI STRATEGY BUFFER 1, 81
ICET SI STRATEGY BUFFER 15, 81
ICET SINGLE IMAGE STRATEGY, 164
ICET SINGLE IMAGE STRATEGY -

AUTOMATIC, 35, 36, 62, 68,
208

ICET SINGLE IMAGE STRATEGY -
BINARY SWAP,
65

ICET SINGLE IMAGE STRATEGY BSWAP,

35, 63, 171, 208
ICET SINGLE IMAGE STRATEGY -

RADIXK, 35, 63, 66,
208

ICET SINGLE IMAGE STRATEGY TREE,
35, 63, 64, 208

ICET SIZE TYPE, 96
icet strategies (library), 121
ICET STRATEGY, 164
ICET STRATEGY BUFFER, 80
ICET STRATEGY BUFFER 0, 80
ICET STRATEGY BUFFER 1, 80
ICET STRATEGY BUFFER 15, 80
ICET STRATEGY DIRECT, 34, 61, 73, 210,

211
ICET STRATEGY REDUCE, 35, 62, 68, 173,

208, 210, 211
ICET STRATEGY SEQUENTIAL, 34, 35, 61,

72, 121, 208, 210, 211
ICET STRATEGY SERIAL, 121
ICET STRATEGY SPLIT, 34, 35, 61, 62, 70,

210, 211
ICET STRATEGY SUPPORTS ORDERING,

51, 75, 134, 164
ICET STRATEGY VTREE, 35, 62, 71, 210,

211
ICET TILE CONTRIB COUNTS, 78
ICET TILE DISPLAYED, 33, 164
ICET TILE MAX HEIGHT, 33, 34, 82, 100,

101, 103, 164
ICET TILE MAX WIDTH, 33, 34, 82, 100,

101, 103, 164
ICET TILE VIEWPORTS, 33, 163–165
ICET TOTAL DRAW TIME, 60, 163, 165,

212
ICET TOTAL IMAGE COUNT, 78
ICET TRUE, 75, 109, 181, 194, 198
ICET TRUE BACKGROUND COLOR, 78,

105
ICET TRUE BACKGROUND COLOR -

WORD, 78,
105

ICET USE FILE, 121
ICET VALID PIXELS NUM, 59, 103, 158,

165

216

ICET VALID PIXELS OFFSET, 59, 103, 158,
165

ICET VALID PIXELS TILE, 59, 103, 158,
165

icetAddTile, 18, 19, 32, 33, 52, 126–127, 155,
164, 165, 177, 200, 202

icetBoundingBox, 20, 39, 40, 77, 128–129,
143, 144, 154, 155, 163, 175, 176

icetBoundingVertices, 39, 40, 77, 128,
130–131, 143, 144, 154, 155, 163, 175,
176

icetClearImage, 85, 86
icetClearImageTrueBackground, 106
icetClearSparseImage, 85
icetCommAllgather, 96, 97
icetCommAlltoall, 97
icetCommBarrier, 96
icetCommDuplicate, 96
icetCommGather, 96, 97
icetCommGatherv, 96, 97
icetCommIrecv, 98
icetCommIsend, 97
icetCommRank, 96, 98
icetCommRecv, 97, 100
IceTCommRequest, 97, 98
icetCommSend, 96, 99
icetCommSendrecv, 97
icetCommSize, 96, 98
IceTCommunicator, 18, 27, 28, 113, 114, 116,

136, 138, 140, 148, 164
IceTCommunicatorStruct, 96
icetCommWait, 98
icetCommWaitany, 96, 98
icetComposite, 95
icetCompositeMode, 47–49, 105, 120,

132–133, 134, 162
icetCompositeOrder, 50, 51, 132, 134–135,

159, 162
icetCompressedComposite, 95, 100
icetCompressedCompressedComposite, 96
icetCompressedSubComposite, 95
icetCompressImage, 93, 94
icetCompressSubImage, 93, 94
IceTConfig.cmake, 16, 121
IceTContext, 18, 27, 29, 136, 138, 146, 167,

204
icetCopyState, 29, 52, 136–137
IceTCore (library), 16, 121
IceTCore.dll, 16
IceTCore.lib, 16
icetCreateContext, 18, 27, 28, 52, 113, 114,

138–139, 146, 179
icetCreateMPICommunicator, 18, 28, 113, 114,

140–141
icetDataReplicationGroup, 57, 130, 134,

142–143, 144
icetDataReplicationGroupColor, 57, 142,

144–145
icetDecompressImage, 94, 106
icetDecompressImageCorrectBackground, 106
icetDecompressSubImage, 94, 106
icetDecompressSubImageCorrectBackground,

103, 106
icetDestroyContext, 27, 114, 146–147
icetDestroyMPICommunicator, 28, 113, 114,

140, 148–149
IceTDevCommunication.h, 96
IceTDevDiagnostics.h, 110
IceTDevImage.h, 81, 100, 106
IceTDevMatrix.h, 106–109
IceTDevState.h, 78, 79
icetDiagnostics, 30, 110, 150–151, 163
icetDisable, 30, 53, 55, 59, 158–160
icetDot3, 108
icetDot4, 108
icetDrawCallback, 36, 37, 40, 130, 152–154,

155, 163, 176, 200, 206
IceTDrawCallbackType, 37, 152
icetDrawFrame, 36, 38, 40, 42, 50, 51, 59, 60,

78, 120, 133, 152, 153, 155–157, 158,
162–165, 176, 178, 202, 206, 207, 210

icetDrawFunc, 120
icetEnable, 30, 50, 158–160, 198
icetFindMyRankInGroup, 98
icetFindRankInGroup, 98, 103
IceTFloat, 119
IceTGenerateData, 101
icetGet, 18, 29–31, 33, 57, 58, 60, 77, 79,

161–166
icetGetColorBuffer, 120

217

icetGetCompressedTileImage, 94, 103
icetGetContext, 29, 167–168
icetGetDepthBuffer, 120
icetGetError, 169–170
icetGetInterlaceOffset, 91, 92
icetGetSingleImageStrategyName, 36, 63, 77,

164, 171–172
icetGetStateBuffer, 79, 81, 88, 90, 100, 103
icetGetStateBufferImage, 80, 81, 103
icetGetStateBufferSparseImage, 80, 81, 88, 92,

99
icetGetStrategyName, 35, 62, 75, 164, 173–174
icetGetTileImage, 94
IceTGL (library), 16, 121
IceTGL.h, 18, 27, 119
icetGLDrawCallback, 20, 39, 42, 120, 130,

152, 155, 163, 165, 175–176, 177, 183,
206

IceTGLDrawCallbackType, 39, 175
icetGLDrawFrame, 20, 39, 42, 43, 50–52, 59,

60, 78, 120, 152, 155, 158, 159,
162–165, 175, 176, 177–178, 200, 206,
207

icetGLInitialize, 18, 28, 120, 156, 159, 165,
176, 179–180, 181, 183

icetGLIsInitialized, 28, 179, 181–182
icetGLSetReadBuffer, 39, 166, 175, 183–184
IceTHandleData, 101
IceTImage, 37, 38, 40, 42–45, 59, 75, 81–87,

93–95, 98–100, 106, 120, 152, 155,
158, 185, 187, 190, 192, 194, 196

icetImageAssignBuffer, 83
icetImageBufferSize, 82, 83, 99
icetImageClearAroundRegion, 86, 87
icetImageCopyColor, 45, 185–186, 187, 189
icetImageCopyDepth, 45, 185–186, 187, 189
icetImageCopyPixels, 85, 86
icetImageCopyRegion, 86
icetImageCorrectBackground, 106
icetImageEqual, 84
icetImageGetColor, 38, 44, 45, 59, 84, 121,

153, 165, 185, 187–189, 190, 192
icetImageGetColorFormat, 44, 83, 162, 187,

188, 190–191
icetImageGetDepth, 38, 44, 45, 59, 84, 121,

153, 165, 185, 186, 187–189, 190, 192
icetImageGetDepthFormat, 44, 83, 163, 187,

188, 190–191
icetImageGetHeight, 44, 83, 153, 185, 187,

192–193, 196
icetImageGetNumPixels, 44, 83, 94, 192–193,

196
icetImageGetWidth, 44, 83, 153, 185, 187,

192–193, 196
icetImageIsNull, 43, 84, 194–195, 196
icetImageNull, 43, 83, 194, 196–197
icetImagePackageForSend, 98, 99
icetImageSetDimensions, 82
icetImageUnpackageFromReceive, 99
icetInputOutputBuffers, 120
IceTInt, 18, 119
icetInvokeSingleImageStrategy, 77
icetInvokeStrategy, 76
icetIsEnabled, 30, 92, 166, 198–199
icetMatrixCopy, 108
icetMatrixFrustum, 109
icetMatrixIdentity, 108
icetMatrixInverse, 109
icetMatrixInverseTranspose, 109
icetMatrixMultiply, 107
icetMatrixMultiplyRotate, 109
icetMatrixMultiplyScale, 109
icetMatrixMultiplyTranslate, 109
icetMatrixOrtho, 108
icetMatrixPostMultiply, 107
icetMatrixRotate, 108
icetMatrixScale, 108
icetMatrixTranslate, 108
icetMatrixTranspose, 109
icetMatrixVectorMultiply, 107
IceTMPI (library), 16, 113, 114, 121
IceTMPI.h, 18, 27, 113, 114, 119
icetPhysicalRenderSize, 34, 38, 52, 153, 164,

200–201
icetRaiseDebug, 110
icetRaiseDebug1, 111
icetRaiseDebug2, 111
icetRaiseDebug4, 111
icetRaiseError, 103, 110
icetRaiseWarning, 110

218

icetRenderTransferFullImages, 100, 101
icetRenderTransferSparseImages, 101
icetResetTiles, 18, 19, 32, 126, 164, 202–203
icetSendRecvLargeMessages, 101
icetSetColorFormat, 38, 47, 48, 120, 132, 133,

155, 162, 196, 206–207
icetSetContext, 29, 52, 146, 167, 204–205
icetSetDepthFormat, 38, 47–49, 120, 132, 133,

155, 163, 196, 206–207
icetSingleImageCollect, 102, 103, 106
icetSingleImageCompose, 102, 103
icetSingleImageStrategy, 35, 62, 64–66, 68, 76,

102, 155, 164, 177, 208–209, 211
icetSingleImageStrategyNameFromEnum, 77
icetSingleImageStrategyValid, 77
IceTSparseImage, 81–85, 87, 88, 91, 93–96,

98–103, 106
icetSparseImageAssignBuffer, 83, 88, 90
icetSparseImageBufferSize, 82, 83, 88, 90,

99–101
icetSparseImageCopyPixels, 87
icetSparseImageEqual, 84
icetSparseImageGetColorFormat, 84
icetSparseImageGetDepthFormat, 84
icetSparseImageGetHeight, 83
icetSparseImageGetNumPixels, 83, 88, 90, 92,

103
icetSparseImageGetWidth, 83
icetSparseImageInterlace, 91, 92
icetSparseImageIsNull, 84
icetSparseImageNull, 83
icetSparseImagePackageForSend, 98, 99
icetSparseImageSetDimensions, 82
icetSparseImageSplit, 87–92
icetSparseImageSplitPartitionNumPixels, 88,

90
icetSparseImageUnpackageFromReceive, 99,

100
icetStrategy, 19, 34, 51, 61, 68, 70–73, 75, 155,

159, 164, 173, 177, 210–211
icetStrategyNameFromEnum, 75
icetStrategySupportsOrder, 75
icetStrategyValid, 75
icetUnsafeStateGet, 78, 79, 103
icetWallTime, 212–213

image
collection, 58–59
inflation, 29, 34, 52
interlace, 55, 91–93
null, 43, 83, 84, 194, 196
partitioning, 55, 58–59

INCLUDE DIRECTORIES, 17
interlace, see image, interlace

libIceTCore.a, 16
libIceTCore.so, 16
logical global display, 31

magic k, 58
malloc, 79
matrix operations, 106–109
Mesa 3D, 15
MPI, 15, 17, 18, 20, 96, 98, 113, 114, 117
MPI Comm, 28, 113, 140
MPI IN PLACE, 96
MPI Init, 18
MPICH, 15
mullion, 32

non-display process, 32
null image, see image, null

OpenGL, 15, 17, 18, 20, 27, 28, 33, 34, 39, 42,
43, 49–52, 60, 78, 107–109, 119–121,
126, 138, 152, 155, 159, 161–166, 175,
177, 179, 181, 183, 184, 200, 214

OpenMPI, 15
ordered compositing, see compositing, ordered
over operator, 50, 132

partitioning
image, 55, 58–59

pre-multiplied color, 50

radix-k composite, 66–68
rank, 18
reduce strategy, see strategy, reduce
reduce to single tile, see strategy, reduce
rendering callback, see drawing callback
root process, 19, 30

sequential strategy, see strategy, sequential

219

single-tile rendering, 11, 19, 33
single image composite, 62–68
single image composite network, 62
single image strategy

automatic, 35, 62, 208
binary swap, 35, 63, 208
tree, 35, 63, 208

sort-first, 12
sort-last, 12, 47, 52
sort-middle, 12
spatial decomposition, 11
split strategy, see strategy, split
state, 18, 27–30
state buffer, 79, 81, 99
strategy, 19, 34–36, 61–73

direct, 34, 61, 73, 210
reduce, 19, 35, 62, 68–69, 210
sequential, 19, 34, 61, 72–73, 77, 78, 103,

210
split, 34, 61, 70–71, 210
virtual trees, 35, 62, 71–72, 211

TARGET LINK LIBRARIES, 17
tiled display, 11
tile definition, 31–34
tile split and delegate, see strategy, split
timing, 59–60
tree composite, 64–65

under operator, 50, 132

viewport, 31, 33
virtual trees, see strategy, virtual trees
visibility ordering, 50
volume rendering, 47, 49–51

warning, 30, 110

z-buffer, see also compositing, z-buffer, 48, 132

220

DISTRIBUTION:

1 Berk Geveci
Kitware, Inc.
28 Corporate Drive
Clifton Park, NY 12065

1 Wesley Kendall
1208 Lula Bell Dr
Powell, TN 37849

1 Hank Childs
Lawrence Berkeley National Lab
1 Cyclotron Road, Mailstop 50F1614
Berkeley, CA 94720-8139

3 MS 1323 Kenneth Moreland, 1424
1 MS 0899 Technical Library, 9536 (electronic copy)

221

222

v1.35

	Introduction
	A Parallel Rendering Primer

	Tutorial
	Building IceT
	Linking to IceT Libraries
	Creating IceT Enabled Applications

	Basic Usage
	The State Machine
	Diagnostics
	Display Definition
	Strategies
	Drawing Callback
	Generic Drawing Callback
	OpenGL Drawing Callback
	Specifying Geometry Bounds

	Rendering
	Generic Rendering
	OpenGL Rendering

	Image Objects

	Customizing Compositing
	Compositing Operation
	Z-Buffer Compositing
	Volume Rendering (and Other Transparent Objects)

	Image Inflation
	Floating Viewport
	Active-Pixel Encoding
	Interlaced Images
	Data Replication
	Compositing Network Hints
	Image Partition Collection
	Timing (and Other Metrics)

	Strategies
	Single Image Compositing
	Tree Compositing
	Binary-Swap Compositing
	Radix-k Compositing
	Automatic Algorithm Selection
	Ordered Compositing

	Reduce Strategy
	Split Strategy
	Virtual Trees Strategy
	Sequential Strategy
	Direct Send Strategy

	Implementing New Strategies
	Internal State Variables for Compositing
	Memory Management
	Image Manipulation Functions
	Creating Images
	Querying Images
	Setting Pixel Data
	Copying Full Pixel Data
	Copy Sparse Image Data
	Basic Sparse Image Copy
	Sparse Image Split
	Recursive Sparse Image Split
	Interlacing Images

	Compressing Images
	Rendering Images
	Image Compositing

	Communications
	Transferring Images
	Helper Communication Functions

	Invoking Single-Image Compositing
	Background Correction
	Matrix Operations
	Raising Diagnostics

	Communicators
	MPI Communicators
	User Defined Communicators

	Transitioning from IceT 1.0 to IceT 2
	Header File Changes
	Basic Type Changes
	Function Name Changes
	Getting Image Data
	Miscellaneous Changes
	Libraries
	CMake Configuration

	Future Work
	Man Pages
	icetAddTile
	icetBoundingBox
	icetBoundingVertices
	icetCompositeMode
	icetCompositeOrder
	icetCopyState
	icetCreateContext
	icetCreateMPICommunicator
	icetDataReplicationGroup
	icetDataReplicationGroupColor
	icetDestroyContext
	icetDestroyMPICommunicator
	icetDiagnostics
	icetDrawCallback
	icetDrawFrame
	icetEnable
	icetGet
	icetGetContext
	icetGetError
	icetGetSingleImageStrategyName
	icetGetStrategyName
	icetGLDrawCallback
	icetGLDrawFrame
	icetGLInitialize
	icetGLIsInitialized
	icetGLSetReadBuffer
	icetImageCopyColor
	icetImageGetColor
	icetImageGetColorFormat
	icetImageGetNumPixels
	icetImageIsNull
	icetImageNull
	icetIsEnabled
	icetPhysicalRenderSize
	icetResetTiles
	icetSetContext
	icetSetColorFormat
	icetSingleImageStrategy
	icetStrategy
	icetWallTime

	Index

